jump to navigation

Oracle 19c Automatic Indexing: Non-Equality Predicates Part II (Let’s Spend The Night Together) January 21, 2021

Posted by Richard Foote in 19c, 19c New Features, Automatic Indexing, Autonomous Database, Autonomous Transaction Processing, CBO, Exadata, Full Table Scans, Non-Equality Predicates, Oracle, Oracle Cloud, Oracle Cost Based Optimizer, Oracle General, Oracle Indexes, Oracle19c, Performance Tuning.
add a comment

In my previous post in this series, I discussed out Automatic Indexing currently does not consider Non-Equality predicates. Automatic Indexing will index columns based only on Equality predicates.

So how does Oracle handle the scenario when an SQL has a mixture of both Equality and Non-Equality predicates?

I’ll begin by creating two very similar tables, but with the second table having a more selective CODE column:

SQL> create table pink_floyd (id number, code number, create_date date, name varchar2(42));

Table created.

SQL> insert into pink_floyd select rownum, ceil(dbms_random.value(0, 5000)), sysdate-mod(rownum, 50000)+1, 'Dark Side of the Moon'
from dual connect by level <=10000000;

10000000 rows created.

SQL> commit;

Commit complete.

SQL> exec dbms_stats.gather_table_stats(ownname=>null, tabname=>'PINK_FLOYD');

PL/SQL procedure successfully completed.


SQL> create table pink_floyd1 (id number, code number, create_date date, name varchar2(42));

Table created.

SQL> insert into pink_floyd1 select rownum, ceil(dbms_random.value(0, 25000)), sysdate-mod(rownum, 50000)+1, 'Dark Side of the Moon'
from dual connect by level <=10000000;

10000000 rows created.

SQL> commit;

Commit complete.

SQL> exec dbms_stats.gather_table_stats(ownname=>null, tabname=>'PINK_FLOYD1');

PL/SQL procedure successfully completed.

 

So table PINK_FLOYD has 5,000 distinct CODE values, whereas table PINK_FLOYD1 has 25,000 distinct CODE values.

I’ll next run the following identical SQLs, which both use an Equality predicate on the CODE column and a Non-Equality predicate on the CREATE_DATE column. The CODE column provides some filtering (more so with the PINK_FLOYD1 table) but in combination with the CREATE_DATE column, results in the ultimate filtering with no rows returned:

 

SQL> select * from pink_floyd where code=42 and create_date> '19-JAN-2021';

no rows selected

Execution Plan
----------------------------------------------------------
Plan hash value: 1152280033

----------------------------------------------------------------------------------------
| Id | Operation                 | Name       | Rows | Bytes | Cost (%CPU) | Time      |
----------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT          |            |    1 |    40 |    844 (11) | 00:00:01  |
|* 1 | TABLE ACCESS STORAGE FULL | PINK_FLOYD |    1 |    40 |    844 (11) | 00:00:01  |
----------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("CREATE_DATE">TO_DATE(' 2021-01-19 00:00:00', 'syyyy-mm-ddhh24:mi:ss') AND "CODE"=42)
     filter("CREATE_DATE">TO_DATE(' 2021-01-19 00:00:00', 'syyyy-mm-ddhh24:mi:ss') AND "CODE"=42)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
      63660 consistent gets
      63649 physical reads
          0 redo size
        426 bytes sent via SQL*Net to client
        380 bytes received via SQL*Net from client
          1 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
          0 rows processed


SQL> select * from pink_floyd1 where code=42 and create_date> '19-JAN-2021';

no rows selected

Execution Plan
----------------------------------------------------------
Plan hash value: 564520720

-----------------------------------------------------------------------------------------
| Id | Operation                 | Name        | Rows | Bytes | Cost (%CPU) | Time      |
-----------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT          |             |    1 |    41 |    856 (11) | 00:00:01  |
|* 1 | TABLE ACCESS STORAGE FULL | PINK_FLOYD1 |    1 |    41 |    856 (11) | 00:00:01  |
-----------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("CODE"=42 AND "CREATE_DATE">TO_DATE(' 2021-01-19 00:00:00','syyyy-mm-dd hh24:mi:ss'))
     filter("CODE"=42 AND "CREATE_DATE">TO_DATE(' 2021-01-19 00:00:00','syyyy-mm-dd hh24:mi:ss'))

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
      64424 consistent gets
      64413 physical reads
          0 redo size
        426 bytes sent via SQL*Net to client
        381 bytes received via SQL*Net from client
          1 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
          0 rows processed

 

So how does Automatic Indexing handle this scenario. If we look at the subsequent Automatic Indexing report (highlights only):

 

INDEX DETAILS
-------------------------------------------------------------------------------
The following indexes were created:
*: invisible
-------------------------------------------------------------------------------
-----------------------------------------------------------------------------
| Owner | Table       | Index                | Key  | Type   | Properties   |
-----------------------------------------------------------------------------
| BOWIE | PINK_FLOYD1 | SYS_AI_96snkmu4sk44g | CODE | B-TREE | NONE         |
-----------------------------------------------------------------------------
-------------------------------------------------------------------------------


-------------------------------------------------------------------------------
Parsing Schema Name : BOWIE
SQL ID              : 7wag3gbk0b3tm
SQL Text            : select * from pink_floyd1 where code=42 and create_date> '19-JAN-2021'
Improvement Factor  : 64442.3x

Execution Statistics:
-----------------------------
                      Original Plan                Auto Index Plan
                      ---------------------------- ----------------------------
Elapsed Time (s):     568513                       2771
CPU Time (s):         275534                       1874
Buffer Gets:          1031078                      406
Optimizer Cost:       856                          405
Disk Reads:           1030609                      3
Direct Writes:        0                            0
Rows Processed:       0                            0
Executions:           16                           1

PLANS SECTION
---------------------------------------------------------------------------------------------

- Original
-----------------------------
Plan Hash Value : 564520720

-----------------------------------------------------------------------------------
| Id | Operation                 | Name        | Rows | Bytes | Cost | Time       |
-----------------------------------------------------------------------------------
|  0 | SELECT STATEMENT          |             |      |       |  856 |            |
|  1 | TABLE ACCESS STORAGE FULL | PINK_FLOYD1 |    1 |    41 |  856 | 00:00:01   |
-----------------------------------------------------------------------------------

Notes
-----
- dop = 1
- px_in_memory_imc = no
- px_in_memory = no

- With Auto Indexes
-----------------------------
Plan Hash Value : 2703636439

-------------------------------------------------------------------------------------------------------
| Id  | Operation                           | Name                 | Rows | Bytes | Cost | Time       |
-------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                    |                      |    1 |    41 |  405 | 00:00:01   |
| * 1 | TABLE ACCESS BY INDEX ROWID BATCHED | PINK_FLOYD1          |    1 |    41 |  405 | 00:00:01   |
| * 2 | INDEX RANGE SCAN                    | SYS_AI_96snkmu4sk44g |  403 |       |    3 | 00:00:01   |
-------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
------------------------------------------
* 1 - filter("CREATE_DATE">TO_DATE(' 2021-01-19 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))
* 2 - access("CODE"=42)

Notes
-----
- Dynamic sampling used for this statement ( level = 11 )

 

If we look at the definitions of all indexes currently on these tables:

SQL> select index_name, auto, visibility, compression, status, num_rows, leaf_blocks, clustering_factor
from user_indexes where table_name='PINK_FLOYD';

INDEX_NAME                     AUT VISIBILIT COMPRESSION   STATUS   NUM_ROWS   LEAF_BLOCKS CLUSTERING_FACTOR
------------------------------ --- --------- ------------- -------- ---------- ----------- -----------------
SYS_AI_dp2t0j12zux49           YES INVISIBLE ADVANCED LOW  UNUSABLE   10000000       21702           4161898

SQL> select index_name, column_name, column_position from user_ind_columns where table_name='PINK_FLOYD';

INDEX_NAME                     COLUMN_NAME     COLUMN_POSITION
------------------------------ --------------- ---------------
SYS_AI_dp2t0j12zux49           CODE                          1


SQL> select index_name, auto, visibility, compression, status, num_rows, leaf_blocks, clustering_factor
from user_indexes where table_name='PINK_FLOYD1';

INDEX_NAME                     AUT VISIBILIT COMPRESSION   STATUS     NUM_ROWS LEAF_BLOCKS CLUSTERING_FACTOR
------------------------------ --- --------- ------------- -------- ---------- ----------- -----------------
SYS_AI_96snkmu4sk44g           YES VISIBLE   ADVANCED LOW  VALID      10000000       15400           9969473

SQL> select index_name, column_name, column_position from user_ind_columns where table_name='PINK_FLOYD1';

INDEX_NAME                     COLUMN_NAME     COLUMN_POSITION
------------------------------ --------------- ---------------
SYS_AI_96snkmu4sk44g           CODE                          1

 

In both cases, Automatic Indexing only created an index on the CODE column, as it was the only column with an Equality predicate.

However, the Automatic Index on the table PINK_FLOYD remained in an INVISIBLE/UNUSABLE. That’s because an index on only the CODE column was not efficient enough to improve the performance of the SQL, due to the filtering not being sufficient enough and because of the relatively poor Clustering Factor.

The index on the table PINK_FLOYD1 was eventually created as a VISIBLE/VALID index, as its better filtering was sufficient to actually improve the performance of the SQL.

So if we re-run the first query:

SQL> select * from pink_floyd where code=42 and create_date> '19-JAN-2021';

no rows selected

Execution Plan
----------------------------------------------------------
Plan hash value: 1152280033

----------------------------------------------------------------------------------------
| Id | Operation                 | Name       | Rows | Bytes | Cost (%CPU) | Time      |
----------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT          |            |    1 |    40 |    844 (11) | 00:00:01  |
|* 1 | TABLE ACCESS STORAGE FULL | PINK_FLOYD |    1 |    40 |    844 (11) | 00:00:01  |
----------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("CREATE_DATE">TO_DATE(' 2021-01-19 00:00:00', 'syyyy-mm-ddhh24:mi:ss') AND "CODE"=42)
     filter("CREATE_DATE">TO_DATE(' 2021-01-19 00:00:00', 'syyyy-mm-ddhh24:mi:ss') AND "CODE"=42)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
      63660 consistent gets
      63649 physical reads
          0 redo size
        426 bytes sent via SQL*Net to client
        380 bytes received via SQL*Net from client
          1 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
          0 rows processed

It continues to use a Full Table Scan.

If we re-run the second query:

 

SQL> select * from pink_floyd1 where code=42 and create_date> '19-JAN-2021';

no rows selected

Execution Plan
----------------------------------------------------------
Plan hash value: 2703636439

------------------------------------------------------------------------------------------------------------
| Id | Operation                           | Name                 | Rows | Bytes | Cost (%CPU) | Time      |
------------------------------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT                    |                      |    1 |    41 |     415 (0) | 00:00:01  |
|* 1 | TABLE ACCESS BY INDEX ROWID BATCHED | PINK_FLOYD1          |    1 |    41 |     415 (0) | 00:00:01  |
|* 2 | INDEX RANGE SCAN                    | SYS_AI_96snkmu4sk44g |  412 |       |       3 (0) | 00:00:01  |
------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - filter("CREATE_DATE">TO_DATE(' 2021-01-19 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))
2 - access("CODE"=42)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
        406 consistent gets
          0 physical reads
          0 redo size
        426 bytes sent via SQL*Net to client
        381 bytes received via SQL*Net from client
          1 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
          0 rows processed

 

If now uses the newly created Automatic Index, with an improved 406 Consistent Gets (down from the previous 64424 Consistent Gets with the FTS).

BUT if we were to manually create an index on BOTH CODE and CREATE_DATE columns:

SQL> create index pink_floyd1_code_create_date_i on pink_floyd1(code, create_date) compress advanced low;

Index created.

SQL> select * from pink_floyd1 where code=42 and create_date> '19-JAN-2021';

no rows selected

Execution Plan
----------------------------------------------------------
Plan hash value: 3366491378

----------------------------------------------------------------------------------------------------------------------
| Id | Operation                           | Name                           | Rows | Bytes | Cost (%CPU) | Time      |
----------------------------------------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT                    |                                |    1 |    41 |       4 (0) | 00:00:01  |
|  1 | TABLE ACCESS BY INDEX ROWID BATCHED | PINK_FLOYD1                    |    1 |    41 |       4 (0) | 00:00:01  |
|* 2 | INDEX RANGE SCAN                    | PINK_FLOYD1_CODE_CREATE_DATE_I |    1 |       |       3 (0) | 00:00:01  |
----------------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

2 - access("CODE"=42 AND "CREATE_DATE">TO_DATE(' 2021-01-19 00:00:00', 'syyyy-mm-dd hh24:mi:ss') AND
"CREATE_DATE" IS NOT NULL)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
          3 consistent gets
          0 physical reads
          0 redo size
        426 bytes sent via SQL*Net to client
        381 bytes received via SQL*Net from client
          1 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
          0 rows processed

 

Performance improves significantly further, by reducing Consistent Gets down to just 3.

So if you have SQL statements with a mixture of both Equality and Non-Equality predicates, you may encounter these 2 scenarios:

A potentially efficient index that is not created at all as the filtering on just the Equality based predicates are not sufficient to create a viable index, or

A potentially suboptimal Automatic Index that doesn’t contain useful filtering columns because they’re used in Non-Equality predicates…

Oracle 19c Automatic Indexing: Non-Equality Predicates Part I (Lucy Can’t Dance) January 14, 2021

Posted by Richard Foote in 19c, 19c New Features, Automatic Indexing, Autonomous Database, Autonomous Transaction Processing, Exadata, Full Table Scans, Non-Equality Predicates, Oracle, Oracle Blog, Oracle Cloud, Oracle Indexes, Oracle19c.
2 comments

 

I’ve been waiting a while before posting a series on the various limitations associated with Automatic Indexing, in order to see how the feature matures over time.

The following have all been re-tested post 1 January 2021 on the Autonomous ATP Database Cloud service, using Oracle Database version 19.5.0.0.0.

In the Oracle Documentation (including version 21c), the only limitations with regard Automatic Indexing listed are the following:

  • Auto indexes are local B-tree indexes.
  • Auto indexes can be created for partitioned as well as non-partitioned tables.
  • Auto indexes cannot be created for temporary tables.

Well, as I discussed in the previous series on Automatic Indexing on Partitioned tables, we already saw how Oracle can actually also create Non-Partitioned (Global) indexes. So the limitation on Automatic Indexes being “local” indexes is not actually correct, even with 19c.

But are there other limitations that are not officially documented?

If you look at every example I’ve used previously with regard Automatic Indexing, they all feature Equality predicates. In the following examples, I’m going to run a series on Range Scan predicates that heavily filter and would benefit greatly from an index.

I first create a simple table with 10M rows:

SQL> create table ziggy1 (id number, code number, name varchar2(42));

Table created.

SQL> insert into ziggy1 select rownum, mod(rownum, 1000000)+1, 'David Bowie' from dual connect by level <= 10000000;

10000000 rows created.

SQL> commit;

Commit complete.

SQL> exec dbms_stats.gather_table_stats(ownname=>null, tabname=>'ZIGGY1');

PL/SQL procedure successfully completed.

 

I then run the following range scan queries several times that each return only a few rows:

SQL> select * from ziggy1 where id between 42 and 50;

9 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 4062853157

------------------------------------------------------------------------------------
| Id | Operation                 | Name   | Rows | Bytes | Cost (%CPU) | Time      |
------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT          |        |    8 |   184 |    538 (14) | 00:00:01  |
|* 1 | TABLE ACCESS STORAGE FULL | ZIGGY1 |    8 |   184 |    538 (14) | 00:00:01  |
------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("ID"<=50 AND "ID">=42)
    filter("ID"<=50 AND "ID">=42)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
      39436 consistent gets
      39425 physical reads
          0 redo size
        596 bytes sent via SQL*Net to client
        369 bytes received via SQL*Net from client
          2 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
          9 rows processed


SQL> select * from ziggy1 where id < 0;

no rows selected

Execution Plan
----------------------------------------------------------
Plan hash value: 4062853157

------------------------------------------------------------------------------------
| Id | Operation                 | Name   | Rows | Bytes | Cost (%CPU) | Time      |
------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT          |        |    1 |    23 |    538 (14) | 00:00:01  |
|* 1 | TABLE ACCESS STORAGE FULL | ZIGGY1 |    1 |    23 |    538 (14) | 00:00:01  |
------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("ID"<0)
    filter("ID"<0)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
      39436 consistent gets
      39425 physical reads
          0 redo size
        364 bytes sent via SQL*Net to client
        344 bytes received via SQL*Net from client
          1 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
          0 rows processed

SQL> select * from ziggy1 where id > 100000000000;

no rows selected

Execution Plan
----------------------------------------------------------
Plan hash value: 4062853157

------------------------------------------------------------------------------------
| Id | Operation                 | Name   | Rows | Bytes | Cost (%CPU) | Time      |
------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT          |        |    1 |    23 |    538 (14) | 00:00:01  |
|* 1 | TABLE ACCESS STORAGE FULL | ZIGGY1 |    1 |    23 |    538 (14) | 00:00:01  |
------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("ID">100000000000)
    filter("ID">100000000000)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
      39436 consistent gets
      39425 physical reads
          0 redo size
        364 bytes sent via SQL*Net to client
        355 bytes received via SQL*Net from client
          1 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
          0 rows processed

If we look at the subsequent Automatic Indexing report:

SQL> select dbms_auto_index.report_last_activity() report from dual;

REPORT
--------------------------------------------------------------------------------
GENERAL INFORMATION
-------------------------------------------------------------------------------
Activity start              : 13-JAN-2021 11:55:37
Activity end                : 13-JAN-2021 11:56:20
Executions completed        : 1
Executions interrupted      : 0
Executions with fatal error : 0
-------------------------------------------------------------------------------

SUMMARY (AUTO INDEXES)
-------------------------------------------------------------------------------
Index candidates           : 0
Indexes created            : 0
Space used                 : 0 B
Indexes dropped            : 0
SQL statements verified    : 3
SQL statements improved    : 0
SQL plan baselines created : 0
Overall improvement factor : 0x
-------------------------------------------------------------------------------

SUMMARY (MANUAL INDEXES)
-------------------------------------------------------------------------------
Unused indexes   : 0
Space used       : 0 B
Unusable indexes : 0
-------------------------------------------------------------------------------

We notice NO Automatic Indexes were created.

We can run these queries endlessly and Automatic Indexing will never create associated Automatic Indexes:

SQL> select index_name, auto, constraint_index, visibility from user_indexes where table_name='ZIGGY1';

no rows selected

These queries are doomed to perform Full Table Scans unless indexes are manually created:

SQL> select * from ziggy1 where id between 42 and 50;

9 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 4062853157

------------------------------------------------------------------------------------
| Id | Operation                 | Name   | Rows | Bytes | Cost (%CPU) | Time      |
------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT          |        |    8 |   184 |    538 (14) | 00:00:01  |
|* 1 | TABLE ACCESS STORAGE FULL | ZIGGY1 |    8 |   184 |    538 (14) | 00:00:01  |
------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("ID"<=50 AND "ID">=42)
    filter("ID"<=50 AND "ID">=42)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
      39436 consistent gets
      39425 physical reads
          0 redo size
        596 bytes sent via SQL*Net to client
        369 bytes received via SQL*Net from client
          2 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
          9 rows processed

 

Currently Automatic Indexes do not support Non-Equality predicates. Automatic Indexes are only created based on Equality-based predicates.

Obviously, Automatic Indexing is a fabulous feature and this might all change in the future. But with Non-Equality predicates so prevalent in SQL, it’s vital to note this current limitation when using and relying on Automatic Indexing…

Oracle 19c Automatic Indexing: Indexing Partitioned Tables Part II (Neighbourhood Threat) January 13, 2021

Posted by Richard Foote in 19c, 19c New Features, Automatic Indexing, Autonomous Transaction Processing, CBO, Exadata, Local Indexes, Oracle, Oracle Cloud, Oracle General, Oracle Indexes, Oracle19c, Partitioned Indexes, Partitioning.
1 comment so far

In my first post on Automatic Indexing on Partitioned Tables, I discussed how Automatic Indexing (AI) can now create a Non-Partitioned index if deemed the most effective indexing structure (this wasn’t supported when AI was initially released). A Non-Partitioned index is indeed likely the most efficient indexing structure if the underlying table has many partitions and associated SQL equality predicates only reference non-partition key columns. A Non-Partitioned index ensure Oracle only needs to scan the single index structure and not all the partitions of a Local index.

But what if SQLs do reference the column by which the underlying table is partitioned?

The following SQL has an equality filtering predicate on the RELEASE_DATE column, the column by which the BIG_BOWIE1 table is partitioned:

SQL> SELECT * FROM big_bowie1 where release_date = to_date('2013-12-30 22:15:25', 'syyyy-mm-dd hh24:mi:ss');

no rows selected

If we look at the subsequent AI report:

INDEX DETAILS
-------------------------------------------------------------------------------
The following indexes were created:
*: invisible
-------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------
| Owner | Table      | Index                | Key          | Type   | Properties |
------------------------------------------------------------------------------------------------
| BOWIE | BIG_BOWIE1 | SYS_AI_14gpurjp8m76s | RELEASE_DATE | B-TREE | LOCAL      |
------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------

 

We notice that Automatic Indexing has in this instance created a Local Index.

If we look further down the AI report:

-------------------------------------------------------------------------------
Parsing Schema Name : BOWIE
SQL ID              : 4mm3mbkk38pa8
SQL Text            : SELECT * FROM big_bowie1 where release_date = to_date('2013-12-30 22:15:25', 'syyyy-mm-dd hh24:mi:ss')
Improvement Factor  : 8339x

Execution Statistics:
-----------------------------
                  Original Plan                Auto Index Plan
                  ---------------------------- ----------------------------
Elapsed Time (s): 146957                       71
CPU Time (s):     146124                       71
Buffer Gets:      16678                        3
Optimizer Cost:   162                          4
Disk Reads:       0                            0
Direct Writes:    0                            0
Rows Processed:   0                            0
Executions:       2                            1

PLANS SECTION
---------------------------------------------------------------------------------------------

- Original
-----------------------------
Plan Hash Value : 4031749531

-----------------------------------------------------------------------------------
| Id | Operation                 | Name       | Rows | Bytes | Cost | Time        |
-----------------------------------------------------------------------------------
| 0  | SELECT STATEMENT          |            |      |       |  162 |             |
| 1  | PARTITION RANGE SINGLE    |            | 3602 | 93652 |  162 | 00:00:01    |
| 2  | TABLE ACCESS STORAGE FULL | BIG_BOWIE1 | 3602 | 93652 |  162 | 00:00:01    |
-----------------------------------------------------------------------------------

Notes
-----
- dop = 1
- px_in_memory_imc = no
- px_in_memory = no

- With Auto Indexes
-----------------------------
Plan Hash Value : 4049653350

--------------------------------------------------------------------------------------------------------------
| Id  | Operation                                 | Name                 | Rows | Bytes | Cost | Time        |
--------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                          |                      |    3 |    78 |    4 | 00:00:01    |
|   1 | PARTITION RANGE SINGLE                    |                      |    3 |    78 |    4 | 00:00:01    |
|   2 | TABLE ACCESS BY LOCAL INDEX ROWID BATCHED | BIG_BOWIE1           |    3 |    78 |    4 | 00:00:01    |
| * 3 | INDEX RANGE SCAN                          | SYS_AI_14gpurjp8m76s |    1 |       |    3 | 00:00:01    |
--------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
------------------------------------------
* 3 - access("RELEASE_DATE"=TO_DATE(' 2013-12-30 22:15:25', 'syyyy-mm-dd hh24:mi:ss'))

Notes
-----
- Dynamic sampling used for this statement ( level = 11 )

 

We can see Automatic Indexing has created the index because it provides an average Improvement Factor of 8339x. As the necessary indexed column(s) matches the table partitioning key, it makes sense for the associated index be a Local index as Oracle is certain which specific index partition to visit based on the value of the equality predicate.

If we look at the details of this new AI:

SQL> select index_name, auto, constraint_index, visibility, compression, status, num_rows, leaf_blocks, clustering_factor
from user_indexes where table_name='BIG_BOWIE1';

INDEX_NAME                     AUT CON VISIBILIT COMPRESSION   STATUS     NUM_ROWS LEAF_BLOCKS CLUSTERING_FACTOR
------------------------------ --- --- --------- ------------- -------- ---------- ----------- -----------------
SYS_AI_14gpurjp8m76s           YES NO  VISIBLE   ADVANCED LOW  N/A        20000000       30742          19941449
SYS_AI_8armv0hqq73fa           YES NO  VISIBLE   ADVANCED LOW  VALID      20000000       42697          19995451

SQL> select index_name, column_name, column_position from user_ind_columns where table_name='BIG_BOWIE1' order by index_name, column_position;

INDEX_NAME                     COLUMN_NAME     COLUMN_POSITION
------------------------------ --------------- ---------------
SYS_AI_14gpurjp8m76s           RELEASE_DATE                  1
SYS_AI_8armv0hqq73fa           TOTAL_SALES                   1

SQL> SELECT index_name, partitioning_type, partition_count, locality FROM user_part_indexes WHERE table_name = 'BIG_BOWIE1';

INDEX_NAME                     PARTITION PARTITION_COUNT LOCALI
------------------------------ --------- --------------- ------
SYS_AI_14gpurjp8m76s           RANGE                   8 LOCAL

SQL> select index_name, partition_name, status, compression from user_ind_partitions
where index_name in (select index_name from user_indexes where table_name='BIG_BOWIE1')
order by partition_position;

INDEX_NAME           PARTITION_NAME       STATUS   COMPRESSION
-------------------- -------------------- -------- -------------
SYS_AI_14gpurjp8m76s ALBUMS_2013          USABLE   ADVANCED LOW
SYS_AI_14gpurjp8m76s ALBUMS_2014          USABLE   ADVANCED LOW
SYS_AI_14gpurjp8m76s ALBUMS_2015          USABLE   ADVANCED LOW
SYS_AI_14gpurjp8m76s ALBUMS_2016          USABLE   ADVANCED LOW
SYS_AI_14gpurjp8m76s ALBUMS_2017          USABLE   ADVANCED LOW
SYS_AI_14gpurjp8m76s ALBUMS_2018          USABLE   ADVANCED LOW
SYS_AI_14gpurjp8m76s ALBUMS_2019          USABLE   ADVANCED LOW
SYS_AI_14gpurjp8m76s ALBUMS_2020          USABLE   ADVANCED LOW

 

We can see that indeed, a Visible, Usable, Local index was created by Automatic Indexing.

So depending on the column(s) within the index, Automatic Indexing can potentially create either a Local or Non-Partitioned index when indexing a partitioned table.

Oracle 19c Automatic Indexing: Indexing Partitioned Tables Part I (Conversation Piece) October 14, 2020

Posted by Richard Foote in 19c, 19c New Features, Automatic Indexing, Autonomous Data Warehouse, Autonomous Database, Autonomous Transaction Processing, CBO, Exadata, Index Access Path, Local Indexes, Oracle, Oracle Cloud, Oracle Cost Based Optimizer, Oracle General, Oracle Indexes, Oracle19c, Partitioned Indexes, Partitioning, Performance Tuning.
1 comment so far

In this little series, I’m going to discuss how Automatic Indexing works in relation to Partitioning.

I’ve discussed Indexing and Partitioning many times previously and how Oracle has various options when indexing a partitioned table:

  • Non-Partitioned Index
  • Globally Partitioned Index
  • Locally Partitioned Index

So the question(s) are how does Automatic Indexing handle scenarios with partitioned objects?

A very important point to make at the start is that based on my research, the answer has already changed significantly since Automatic Indexing was first released. So it’s important to understand that Automatic Indexing is an ever evolving capability, that will advance and improve as time goes on.

I’ll focus on how the feature currently works (as of Oracle Database 19.5), but will mention previously identified behaviour as a reference on how things can easily change.

In my first simple little example, I’m just going to create a range-partitioned table, partitioned based on RELEASE_DATE, with a partition for each year’s worth of data:

SQL> CREATE TABLE big_bowie1(id number, album_id number, country_id number, release_date date,
total_sales number) PARTITION BY RANGE (release_date)
(PARTITION ALBUMS_2013 VALUES LESS THAN (TO_DATE('01-JAN-2014', 'DD-MON-YYYY')),
PARTITION ALBUMS_2014 VALUES LESS THAN (TO_DATE('01-JAN-2015', 'DD-MON-YYYY')),
PARTITION ALBUMS_2015 VALUES LESS THAN (TO_DATE('01-JAN-2016', 'DD-MON-YYYY')),
PARTITION ALBUMS_2016 VALUES LESS THAN (TO_DATE('01-JAN-2017', 'DD-MON-YYYY')),
PARTITION ALBUMS_2017 VALUES LESS THAN (TO_DATE('01-JAN-2018', 'DD-MON-YYYY')),
PARTITION ALBUMS_2018 VALUES LESS THAN (TO_DATE('01-JAN-2019', 'DD-MON-YYYY')),
PARTITION ALBUMS_2019 VALUES LESS THAN (TO_DATE('01-JAN-2020', 'DD-MON-YYYY')),
PARTITION ALBUMS_2020 VALUES LESS THAN (MAXVALUE));

Table created.

 

I’ll now add about 8 years worth of data:

SQL> INSERT INTO big_bowie1 SELECT rownum, mod(rownum,5000)+1, mod(rownum,100)+1, sysdate-mod(rownum,2800),
ceil(dbms_random.value(1,500000)) FROM dual CONNECT BY LEVEL <= 10000000;

10000000 rows created.

SQL> COMMIT;

Commit complete.

 

As discussed previously, I’ll importantly collect statistics:

SQL> exec dbms_stats.gather_table_stats(ownname=> null, tabname=> 'BIG_BOWIE1');

PL/SQL procedure successfully completed.

 

I’ll now run the following very selective query based the TOTAL_SALES column that is NOT part of the partitioning key:

 

SQL> SELECT * FROM big_bowie1 WHERE total_sales = 42;

19 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 2468051548

---------------------------------------------------------------------------------------------------------
| Id | Operation                | Name       | Rows | Bytes | Cost (%CPU)| Time     | Pstart| Pstop     |
---------------------------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT         |            |   20 |   520 |    643 (15)| 00:00:01 |       |           |
|  1 | PARTITION RANGE ALL      |            |   20 |   520 |    643 (15)| 00:00:01 |     1 |         8 |
|* 2 | TABLE ACCESS STORAGE FULL| BIG_BOWIE1 |   20 |   520 |    643 (15)| 00:00:01 |     1 |         8 |
---------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

2 - storage("TOTAL_SALES"=42)
    filter("TOTAL_SALES"=42)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
      44014 consistent gets
       9516 physical reads
          0 redo size
       1107 bytes sent via SQL*Net to client
        369 bytes received via SQL*Net from client
          2 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
         19 rows processed

 

Without an index in place, the CBO has no choice but to use a FTS. But what will Automatic Indexing make of things?

If we look at the next Automatic Indexing report:

 

SQL> select dbms_auto_index.report_last_activity() from dual;

GENERAL INFORMATION
-------------------------------------------------------------------------------
Activity start              : 13-OCT-2020 01:47:48
Activity end                : 13-OCT-2020 02:59:48
Executions completed        : 1
Executions interrupted      : 0
Executions with fatal error : 0
-------------------------------------------------------------------------------

SUMMARY (AUTO INDEXES)
-------------------------------------------------------------------------------
Index candidates                             : 1
Indexes created (visible / invisible)        : 1 (1 / 0)
Space used (visible / invisible)             : 184.55 MB (184.55 MB / 0 B)
Indexes dropped                              : 0
SQL statements verified                      : 2
SQL statements improved (improvement factor) : 1 (44119.6x)
SQL plan baselines created                   : 0
Overall improvement factor                   : 25135.8x
-------------------------------------------------------------------------------

SUMMARY (MANUAL INDEXES)
-------------------------------------------------------------------------------
Unused indexes   : 0
Space used       : 0 B
Unusable indexes : 0
-------------------------------------------------------------------------------

INDEX DETAILS
-------------------------------------------------------------------------------
The following indexes were created:
*: invisible
-------------------------------------------------------------------------------
---------------------------------------------------------------------------------
| Owner | Table      | Index                | Key         | Type   | Properties |
---------------------------------------------------------------------------------
| BOWIE | BIG_BOWIE1 | SYS_AI_2zt7rg40mxa4n | TOTAL_SALES | B-TREE | NONE       |
---------------------------------------------------------------------------------
-------------------------------------------------------------------------------

VERIFICATION DETAILS
-------------------------------------------------------------------------------
The performance of the following statements improved:
-------------------------------------------------------------------------------
Parsing Schema Name : BOWIE
SQL ID              : chwm2gubm8fx9
SQL Text            : SELECT * FROM big_bowie1 WHERE total_sales = 42
Improvement Factor  : 44119.6x

Execution Statistics:
-----------------------------
                     Original Plan                Auto Index Plan
                     ---------------------------- ----------------------------
Elapsed Time (s):    4387193                      1173
CPU Time (s):        2599423                      1037
Buffer Gets:         749507                       22
Optimizer Cost:      643                          22
Disk Reads:          470976                       2
Direct Writes:       0                            0
Rows Processed:      323                          19
Executions:          17                           1

PLANS SECTION
---------------------------------------------------------------------------------------------

- Original
-----------------------------
Plan Hash Value : 2468051548

-----------------------------------------------------------------------------------
| Id | Operation                 | Name       | Rows | Bytes | Cost | Time        |
-----------------------------------------------------------------------------------
|  0 | SELECT STATEMENT          |            |      |       |  643 |             |
|  1 | PARTITION RANGE ALL       |            |   20 |   520 |  643 | 00:00:01    |
|  2 | TABLE ACCESS STORAGE FULL | BIG_BOWIE1 |   20 |   520 |  643 | 00:00:01    |
-----------------------------------------------------------------------------------

Notes
-----
- dop = 1
- px_in_memory_imc = no
- px_in_memory = no

- With Auto Indexes
-----------------------------
Plan Hash Value : 937174207

--------------------------------------------------------------------------------------------------------------
| Id  | Operation                                  | Name                 | Rows | Bytes | Cost | Time       |
--------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                           |                      |   19 |   494 |   22 | 00:00:01   |
|   1 | TABLE ACCESS BY GLOBAL INDEX ROWID BATCHED | BIG_BOWIE1           |   19 |   494 |   22 | 00:00:01   |
| * 2 | INDEX RANGE SCAN                           | SYS_AI_2zt7rg40mxa4n |   19 |       |    3 | 00:00:01   |
--------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
------------------------------------------
* 2 - access("TOTAL_SALES"=42)

Notes
-----
- Dynamic sampling used for this statement ( level = 11 )

 

We notice a couple of interesting points.

Firstly, yes Automatic Indexing has created an index based on the TOTAL_SALES column (SYS_AI_2zt7rg40mxa4n) as it improves performance by a reported 44119.6x.

Note also that the Automatic Index is a Non-Partitioned (Global) Index. From a performance perspective, this is the most efficient index to create to improve the performance of this query as the CBO only has the one index structure to navigate (vs. a LOCAL index that would require having to navigate down all 8 index structures for each table partition.

If we look at the index details:

SQL> SELECT index_name, partitioned, auto, visibility, status FROM user_indexes
WHERE table_name = 'BIG_BOWIE1';

INDEX_NAME                     PAR AUT VISIBILIT STATUS
------------------------------ --- --- --------- --------
SYS_AI_2zt7rg40mxa4n           NO  YES VISIBLE   VALID

 

We notice that this is indeed a Non-Partitioned Index, that is both VISIBLE and VALID and so can be potentially used by any database session.

If we now re-run the query:

SQL> SELECT * FROM big_bowie1 WHERE total_sales = 42;

19 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 937174207

-----------------------------------------------------------------------------------------------------------------------------------
| Id | Operation                                 | Name                 | Rows | Bytes | Cost (%CPU)| Time     | Pstart| Pstop    |
-----------------------------------------------------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT                          |                      |   20 |   520 |      23 (0)| 00:00:01 |       |          |
|  1 | TABLE ACCESS BY GLOBAL INDEX ROWID BATCHED| BIG_BOWIE1           |   20 |   520 |      23 (0)| 00:00:01 | ROWID | ROWID    |
|* 2 | INDEX RANGE SCAN                          | SYS_AI_2zt7rg40mxa4n |   20 |       |       3 (0)| 00:00:01 |       |          |
-----------------------------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

2 - access("TOTAL_SALES"=42)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
         23 consistent gets
          0 physical reads
          0 redo size
       1166 bytes sent via SQL*Net to client
        369 bytes received via SQL*Net from client
          2 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
         19 rows processed

 

We can see the query now uses the newly created Automatic Index and is indeed more efficient, performing now just 23 consistent gets (previously 44014 consistent gets).

 

However, this was NOT previous behaviour.

The documentation previously mentioned that only LOCAL indexes are used when indexing partitioned tables.

If we run the same demo on Oracle Database 19.3, we get the following report:

 

GENERAL INFORMATION
-------------------------------------------------------------------------------
Activity start              : 14-OCT-2020 13:12:07
Activity end                : 14-OCT-2020 14:24:07
Executions completed        : 1
Executions interrupted      : 0
Executions with fatal error : 0
-------------------------------------------------------------------------------

SUMMARY (AUTO INDEXES)
-------------------------------------------------------------------------------
Index candidates                             : 1
Indexes created (visible / invisible)        : 1 (1 / 0)
Space used (visible / invisible)             : 192.94 MB (192.94 MB / 0 B)
Indexes dropped                              : 0
SQL statements verified                      : 1
SQL statements improved (improvement factor) : 1 (1950.5x)
SQL plan baselines created                   : 0
Overall improvement factor                   : 1950.5x
-------------------------------------------------------------------------------

SUMMARY (MANUAL INDEXES)
-------------------------------------------------------------------------------
Unused indexes   : 0
Space used       : 0 B
Unusable indexes : 0
-------------------------------------------------------------------------------

INDEX DETAILS
-------------------------------------------------------------------------------
The following indexes were created:
*: invisible
-------------------------------------------------------------------------------
---------------------------------------------------------------------------------
| Owner | Table      | Index                | Key         | Type   | Properties |
---------------------------------------------------------------------------------
| BOWIE | BIG_BOWIE1 | SYS_AI_8armv0hqq73fa | TOTAL_SALES | B-TREE | LOCAL      |
---------------------------------------------------------------------------------
-------------------------------------------------------------------------------

VERIFICATION DETAILS
-------------------------------------------------------------------------------
The performance of the following statements improved:
-------------------------------------------------------------------------------
Parsing Schema Name : BOWIE
SQL ID              : 2pp8ypramw30s
SQL Text            : SELECT * FROM big_bowie1 WHERE total_sales = 42
Improvement Factor  : 1950.5x

Execution Statistics:
-----------------------------
                     Original Plan                Auto Index Plan
                     ---------------------------- ----------------------------
Elapsed Time (s):    6996973                      27327
CPU Time (s):        6704215                      12819
Buffer Gets:         815306                       49
Optimizer Cost:      12793                        28
Disk Reads:          2                            40
Direct Writes:       0                            0
Rows Processed:      475                          25
Executions:          19                           1

PLANS SECTION
---------------------------------------------------------------------------------------------

- Original
-----------------------------
Plan Hash Value : 4294056405

-----------------------------------------------------------------------------
| Id | Operation          | Name       | Rows | Bytes | Cost  | Time        |
-----------------------------------------------------------------------------
| 0 | SELECT STATEMENT    |            |      |       | 12793 |             |
| 1 | PARTITION RANGE ALL |            |   20 |   520 | 12793 | 00:00:01    |
| 2 | TABLE ACCESS FULL   | BIG_BOWIE1 |   20 |   520 | 12793 | 00:00:01    |
-----------------------------------------------------------------------------

- With Auto Indexes
-----------------------------
Plan Hash Value : 3781269341

--------------------------------------------------------------------------------------------------------------
|  Id | Operation                                 | Name                 | Rows | Bytes | Cost | Time        |
--------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                          |                      |   25 |   650 |   28 | 00:00:01    |
|   1 | PARTITION RANGE ALL                       |                      |   25 |   650 |   28 | 00:00:01    |
|   2 | TABLE ACCESS BY LOCAL INDEX ROWID BATCHED | BIG_BOWIE1           |   25 |   650 |   28 | 00:00:01    |
| * 3 | INDEX RANGE SCAN                          | SYS_AI_8armv0hqq73fa |   25 |       |   17 | 00:00:01    |
--------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
------------------------------------------
* 3 - access("TOTAL_SALES"=42)

Notes
-----
- Dynamic sampling used for this statement ( level = 11 )

 

As we can see, in this scenario, the newly created Automatic Index has a “Property” of LOCAL.

If we look at its index details:

 

SQL> SELECT index_name, partitioned, auto, visibility, status FROM user_indexes
WHERE table_name = 'BIG_BOWIE1';

INDEX_NAME                     PAR AUT VISIBILIT STATUS
------------------------------ --- --- --------- --------
SYS_AI_8armv0hqq73fa           YES YES VISIBLE   N/A

SQL> SELECT index_name, partitioning_type, partition_count, locality FROM user_part_indexes
WHERE table_name = 'BIG_BOWIE1';

INDEX_NAME                     PARTITION PARTITION_COUNT LOCALI
------------------------------ --------- --------------- ------
SYS_AI_8armv0hqq73fa           RANGE                   8 LOCAL

 

We can see how a Local Index was previously created.

As such if we re-run an equivalent query:

SQL> SELECT * FROM big_bowie1 WHERE total_sales = 42;

25 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 3781269341

-----------------------------------------------------------------------------------------------------------------------------------
| Id | Operation                                | Name                 | Rows | Bytes | Cost (%CPU)| Time     | Pstart| Pstop     |
-----------------------------------------------------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT                         |                      |   20 |   520 |      26 (0)| 00:00:01 |       |           |
|  1 | PARTITION RANGE ALL                      |                      |   20 |   520 |      26 (0)| 00:00:01 |     1 |         8 |
|  2 | TABLE ACCESS BY LOCAL INDEX ROWID BATCHED| BIG_BOWIE1           |   20 |   520 |      26 (0)| 00:00:01 |     1 |         8 |
|* 3 | INDEX RANGE SCAN                         | SYS_AI_8armv0hqq73fa |   20 |       |      17 (0)| 00:00:01 |     1 |         8 |
-----------------------------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

3 - access("TOTAL_SALES"=42)

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
         50 consistent gets
          0 physical reads
          0 redo size
       1555 bytes sent via SQL*Net to client
        409 bytes received via SQL*Net from client
          2 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
         25 rows processed

 

Although the query is returning 6 more rows (as with the random number generation, has a slightly different data set), it’s more expensive proportionally now having to perform 50 consistent gets as it now has to read 8 index structures rather than just the one.

So (IMHO), Automatic Indexing has improved here, creating a more efficient index structure than previously. So always bear in mind that Automatic Indexing is an evolving beast, improving and adapting as time moves on.

However, note the compromise here is that by having an effectively Global index structure, there may be some additional issues depending on any subsequent structural changes to the table.

More on Automatic Indexing and Partitioning in my next post…

Oracle 19c Automatic Indexing: Indexing With Stale Statistics Part III (Do Anything You Say) October 8, 2020

Posted by Richard Foote in 19c, 19c New Features, Automatic Indexing, Autonomous Data Warehouse, Autonomous Database, Autonomous Transaction Processing, CBO, Exadata, Full Table Scans, Index Access Path, Index statistics, Oracle, Oracle Cloud, Oracle Cost Based Optimizer, Oracle General, Oracle Indexes, Oracle Statistics, Performance Tuning, Stale Statistics.
2 comments

In Part I of this series, we saw how Automatic Indexing will not create a viable Automatic Index if there are stale or missing statistics on the underlining segments. In Part II we saw how these SQL statements effectively become blacklisted and when segment statistics are subsequently collected, Automatic Indexing will still not create viable Automatic Indexes when the SQL statements are re-run.

So how do we get Automatic Indexing to now kick in and create necessary indexes on these problematic SQLs?

As I’ve discussed previously in relation to blacklisted SQLs, we need to run a NEW SQL statement that hasn’t been blacklist that will result in a necessary index to be created. An easy way to do this is just to include a new comment within the previous SQL to give the SQL a new signature.

If we now run the following “new” SQL statement (identical to the problematic SQL but with a comment embedded):

SQL> select /* new */ * from bowie_stale where code=42;

        ID       CODE NAME
---------- ---------- ------------------------------------------
   1000041         42 David Bowie
   6000041         42 David Bowie
        41         42 David Bowie
   3000041         42 David Bowie
   7000041         42 David Bowie
   8000041         42 David Bowie
   4000041         42 David Bowie
   9000041         42 David Bowie
   5000041         42 David Bowie
   2000041         42 David Bowie

 

If we now wait to see what the next Automatic Indexing task makes of things:

 

SQL> select dbms_auto_index.report_last_activity('text', 'ALL', 'ALL' ) report from dual;

REPORT
--------------------------------------------------------------------------------
GENERAL INFORMATION
-------------------------------------------------------------------------------
Activity start              : 07-JUL-2020 06:34:49
Activity end                : 07-JUL-2020 06:35:54
Executions completed        : 1
Executions interrupted      : 0
Executions with fatal error : 0
-------------------------------------------------------------------------------

SUMMARY (AUTO INDEXES)
-------------------------------------------------------------------------------
Index candidates                             : 0
Indexes created (visible / invisible)        : 1 (1 / 0)
Space used (visible / invisible)             : 142.61 MB (142.61 MB / 0 B)
Indexes dropped                              : 0
SQL statements verified                      : 1
SQL statements improved (improvement factor) : 1 (19787.7x)
SQL plan baselines created                   : 0
Overall improvement factor                   : 19787.7x
-------------------------------------------------------------------------------

SUMMARY (MANUAL INDEXES)
-------------------------------------------------------------------------------
Unused indexes   : 0
Space used       : 0 B
Unusable indexes : 0
-------------------------------------------------------------------------------

INDEX DETAILS
-------------------------------------------------------------------------------
1. The following indexes were created:
*: invisible
-------------------------------------------------------------------------------
---------------------------------------------------------------------------
| Owner | Table       | Index                | Key  | Type   | Properties |
---------------------------------------------------------------------------
| BOWIE | BOWIE_STALE | SYS_AI_300kk2unp8tr0 | CODE | B-TREE | NONE       |
---------------------------------------------------------------------------
-------------------------------------------------------------------------------

 

We see that the index on the CODE column (SYS_AI_300kk2unp8tr0) has now been created.

Further down the report:

 

VERIFICATION DETAILS
-------------------------------------------------------------------------------
The performance of the following statements improved:
-------------------------------------------------------------------------------
Parsing Schema Name : BOWIE
SQL ID              : du6psd0xmzpg5
SQL Text            : select /* new */ * from bowie_stale where code=42
Improvement Factor  : 19787.7x

Execution Statistics:
-----------------------------
                  Original Plan Auto           Index Plan
                  ---------------------------- ----------------------------
Elapsed Time (s): 137261                       2620
CPU Time (s):     84621                        1769
Buffer Gets:      277028                       13
Optimizer Cost:   544                          13
Disk Reads:       275947                       2
Direct Writes:    0                            0
Rows Processed:   70                           10
Executions:       7                            1

 

A new index was indeed created because of this new SQL statement, with a performance improvement of 19787.7x.

Further down the report to the Plans Section:

 

PLANS SECTION
---------------------------------------------------------------------------------------------

- Original
-----------------------------
Plan Hash Value : 65903426

-----------------------------------------------------------------------------------
| Id | Operation                | Name        | Rows | Bytes | Cost | Time        |
-----------------------------------------------------------------------------------
| 0 | SELECT STATEMENT          |             |      |       |  544 |             |
| 1 | TABLE ACCESS STORAGE FULL | BOWIE_STALE |   10 |   230 |  544 | 00:00:01    |
-----------------------------------------------------------------------------------

Notes
-----
- dop = 1
- px_in_memory_imc = no
- px_in_memory = no

- With Auto Indexes
-----------------------------
Plan Hash Value : 2558864466

-------------------------------------------------------------------------------------------------------
| Id  | Operation                           | Name                 | Rows | Bytes | Cost | Time       |
-------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                    |                      |   10 |   230 |   13 | 00:00:01   |
|   1 | TABLE ACCESS BY INDEX ROWID BATCHED | BOWIE_STALE          |   10 |   230 |   13 | 00:00:01   |
| * 2 | INDEX RANGE SCAN                    | SYS_AI_300kk2unp8tr0 |   10 |       |    3 | 00:00:01   |
-------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
------------------------------------------
* 2 - access("CODE"=42)

Notes
-----
- Dynamic sampling used for this statement ( level = 11 )

 

We can see that the new plan using the new Automatic Index with a much lower CBO cost.

If we now look at the status of this index:

SQL> select index_name, auto, constraint_index, visibility, compression, status, num_rows, leaf_blocks, clustering_factor
from user_indexes where table_name='BOWIE_STALE';

INDEX_NAME                     AUT CON VISIBILIT COMPRESSION   STATUS     NUM_ROWS LEAF_BLOCKS CLUSTERING_FACTOR
------------------------------ --- --- --------- ------------- -------- ---------- ----------- -----------------
BOWIE_STALE_PK                 NO  YES VISIBLE   DISABLED      VALID      10000000       20164             59110
SYS_AI_300kk2unp8tr0           YES NO  VISIBLE   ADVANCED LOW  VALID      10000000       16891          10000000

 

We see that the index is now both VISIBLE and VALID (previously, it was INVISIBLE and UNUSABLE).

As such, the Automatic Index can now potentially be used by any SQL, including the previous problematic query.

So with a viable index now in place, if we re-run the initial problematic query:

SQL> select * from bowie_stale where code=42;

10 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 2558864466

------------------------------------------------------------------------------------------------------------
| Id | Operation                          | Name                 | Rows | Bytes | Cost (%CPU)| Time        |
------------------------------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT                   |                      |   10 |   230 |      14 (0)| 00:00:01    |
|  1 | TABLE ACCESS BY INDEX ROWID BATCHED| BOWIE_STALE          |   10 |   230 |      14 (0)| 00:00:01    |
|* 2 | INDEX RANGE SCAN                   | SYS_AI_300kk2unp8tr0 |   10 |       |       3 (0)| 00:00:01    |
------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

2 - access("CODE"=42)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
         14 consistent gets
          0 physical reads
          0 redo size
        738 bytes sent via SQL*Net to client
        361 bytes received via SQL*Net from client
          2 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
         10 rows processed

 

We see that finally, the SQL uses the new Automatic Index and is indeed much more efficient as a result, with just 14 consistent gets required (when previously it was 39430 consistent gets).

So if ever you come across the scenario where an SQL does not have an Automatic Index created when clearly it should, it could be that it has been blacklisted and needs a different SQL to actually generate the necessary index.

To avoid some of these issues, make sure you do not have stale or missing statistics when reliant on Automatic Indexing. The new High Frequency Statistics Collection capability to designed to specifically avoid such a scenario.

Oracle 19c Automatic Indexing: Indexing With Stale Statistics Part II (Survive) October 7, 2020

Posted by Richard Foote in 19c, 19c New Features, Automatic Indexing, Autonomous Data Warehouse, Autonomous Database, Autonomous Transaction Processing, CBO, Exadata, Full Table Scans, Index Internals, Index statistics, Oracle, Oracle General, Oracle Indexes, Oracle Statistics, Oracle19c, Performance Tuning, Stale Statistics.
1 comment so far

 

 

In my previous post, I discussed how having stale statistics, usually a bad idea, is especially problematic with regard Automatic Indexes as it usually results in viable automatic indexes only being created in an UNUSABLE/INVISIBLE state.

If we were to now to collect the missing statistics:

SQL> exec dbms_stats.gather_table_stats(ownname=>null, tabname=>'BOWIE_STALE');

PL/SQL procedure successfully completed.

SQL> select table_name, num_rows, blocks, last_analyzed from user_tables
where table_name='BOWIE_STALE';

TABLE_NAME             NUM_ROWS     BLOCKS LAST_ANAL
-------------------- ---------- ---------- ---------
BOWIE_STALE            10000000      39677 06-JUL-20

SQL> select column_name, num_distinct, density, histogram, last_analyzed from user_tab_cols
where table_name='BOWIE_STALE';

COLUMN_NAME          NUM_DISTINCT    DENSITY HISTOGRAM       LAST_ANAL
-------------------- ------------ ---------- --------------- ---------
ID                       10000000          0 HYBRID          06-JUL-20
CODE                       971092    .000001 HYBRID          06-JUL-20
NAME                            1 4.9416E-08 FREQUENCY       06-JUL-20

 

If we now repeatedly re-run the problematic query many times:

 

SQL> select * from bowie_stale where code=42;

10 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 65903426

-----------------------------------------------------------------------------------------
| Id | Operation                | Name        | Rows | Bytes | Cost (%CPU)|  Time       |
-----------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT         |             |   10 |   230 |    544 (14)|  00:00:01   |
|* 1 | TABLE ACCESS STORAGE FULL| BOWIE_STALE |   10 |   230 |    544 (14)|  00:00:01   |
-----------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("CODE"=42)
    filter("CODE"=42)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
      39430 consistent gets
      39421 physical reads
          0 redo size
        610 bytes sent via SQL*Net to client
        361 bytes received via SQL*Net from client
          2 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
         10 rows processed

 

 

The CBO is forced to use the FTS as the current Automatic Index is in an UNUSABLE/INVISIBLE state.

If we wait for the next Automatic Indexing reporting period:

 

SQL> select dbms_auto_index.report_last_activity('text', 'ALL', 'ALL' ) report from dual;

REPORT
--------------------------------------------------------------------------------
GENERAL INFORMATION
-------------------------------------------------------------------------------
Activity start              : 06-JUL-2020 05:12:42
Activity end                : 06-JUL-2020 05:13:34
Executions completed        : 1
Executions interrupted      : 0
Executions with fatal error : 0
-------------------------------------------------------------------------------

SUMMARY (AUTO INDEXES)
-------------------------------------------------------------------------------
Index candidates           : 0
Indexes created            : 0
Space used                 : 0 B
Indexes dropped            : 0
SQL statements verified    : 0
SQL statements improved    : 0
SQL plan baselines created : 0
Overall improvement factor : 0x
-------------------------------------------------------------------------------

SUMMARY (MANUAL INDEXES)
-------------------------------------------------------------------------------
Unused indexes   : 0
Space used       : 0 B
Unusable indexes : 0
-------------------------------------------------------------------------------

 

We notice that the Automatic Indexing process has nothing to report. Even though the problematic query is repeatedly executed, the SQL is now effectively on a blacklist and is not re-considered by the Automatic Indexing process.

If we look at the index details on the table:

 

SQL> select index_name, auto, constraint_index, visibility, compression, status, num_rows, leaf_blocks, clustering_factor
from user_indexes where table_name='BOWIE_STALE';

INDEX_NAME             AUT CON VISIBILIT COMPRESSION   STATUS     NUM_ROWS LEAF_BLOCKS CLUSTERING_FACTOR
---------------------- --- --- --------- ------------- -------- ---------- ----------- -----------------
BOWIE_STALE_PK         NO  YES VISIBLE   DISABLED      VALID      10000000       20164             59110
SYS_AI_300kk2unp8tr0   YES NO  INVISIBLE ADVANCED LOW  UNUSABLE   10000000       23058           4147514 

 

So the Automatic Index (SYS_AI_300kk2unp8tr0) is still UNUSABLE and INVISIBLE and can not be used by the CBO.

NOTE: In earlier patches of Oracle Database 19c (I’m using version 19.5.0.0.0 in this demo), I identified some scenarios after stale statistics when indexes were created in but in a VALID/INVISIBLE state, such that they could still not be used by the CBO in general database sessions.

If we simply re-run the same queries again from the time when the dependant object statistics were stale, any SQL is just ignored by the Automatic Indexing process.

As such, if we now subsequently re-run the problematic query again:

SQL> select * from bowie_stale where code=42;

10 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 65903426

-----------------------------------------------------------------------------------------
| Id | Operation                | Name        | Rows | Bytes | Cost (%CPU)| Time        |
-----------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT         |             |   10 |   230 |    544 (14)| 00:00:01    |
|* 1 | TABLE ACCESS STORAGE FULL| BOWIE_STALE |   10 |   230 |    544 (14)| 00:00:01    |
-----------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("CODE"=42)
    filter("CODE"=42)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
      39430 consistent gets
      39421 physical reads
          0 redo size
        610 bytes sent via SQL*Net to client
        361 bytes received via SQL*Net from client
          2 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
         10 rows processed

 

Again, the CBO has no choice here with no viable VALID/VISIBLE index present but to perform a FTS, even though its getting the cardinality estimates spot on since statistics gathering.

 

In Part III I’ll discuss how to get this query to finally use the Automatic Index and improve its performance, although if you’re a regular reader of the blog you should already know the solution…

Oracle 19c Automatic Indexing: Indexing With Stale Statistics Part I (Dead Against It) October 6, 2020

Posted by Richard Foote in 19c, 19c New Features, Automatic Indexing, Autonomous Data Warehouse, Autonomous Database, Autonomous Transaction Processing, CBO, Exadata, Exadata X8, Full Table Scans, High Frequency Statistics Collection, Index Access Path, Index statistics, Oracle, Oracle Cloud, Oracle Cost Based Optimizer, Oracle General, Oracle Indexes, Performance Tuning, Stale Statistics, Unusable Indexes.
5 comments

A “golden rule” when working with Automatic Indexing is that things don’t work properly if there are stale statistics on the dependant objects. Stale statistics can of course be problematic but they can be particularly troublesome when dealing with Automatic Indexing.

In the Oracle Autonomous Database environments, this issue is addressed somewhat by the new High Frequency Statistics Collection capability, which helps to automatically collect stale statistics on a regular basis. However, in on-prem Exadata environments where this can more easily be turned off or collected less frequently, it’s a potential issue worth consideration.

I’ll start with a simple little table, with a CODE column that has lots of distinct values:

SQL> create table bowie_stale (id number constraint bowie_stale_pk primary key, code number, name varchar2(42));

Table created.

SQL> insert into bowie_stale select rownum, mod(rownum, 1000000)+1, 'David Bowie' from dual connect by level <= 10000000;

10000000 rows created.

SQL> commit;

Commit complete.

Importantly, I don’t collect statistics on this newly populated table…

SQL> select table_name, num_rows, blocks, last_analyzed from user_tables
where table_name='BOWIE_STALE';

TABLE_NAME        NUM_ROWS     BLOCKS LAST_ANAL
--------------- ---------- ---------- ---------
BOWIE_STALE

SQL> select column_name, num_distinct, density, histogram, last_analyzed from user_tab_cols
where table_name='BOWIE_STALE';

COLUMN_NAME          NUM_DISTINCT    DENSITY HISTOGRAM       LAST_ANAL
-------------------- ------------ ---------- --------------- ---------
ID                                           NONE
CODE                                         NONE
NAME                                         NONE

If we now run the following query a number of times while there are no statistics on the table:

SQL> select * from bowie_stale where code=42;

10 rows selected.

Execution Plan

-----------------------------------------------------------------------------------------
| Id | Operation                | Name        | Rows | Bytes | Cost (%CPU)| Time        |
-----------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT         |             |  437 | 21413 |    553 (16)| 00:00:01    |
|* 1 | TABLE ACCESS STORAGE FULL| BOWIE_STALE |  437 | 21413 |    553 (16)| 00:00:01    |
-----------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("CODE"=42)
    filter("CODE"=42)

Note
-----
- dynamic statistics used: dynamic sampling (level=2)
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          6  recursive calls
          0  db block gets
      39026  consistent gets
          0  physical reads
          0  redo size
        867  bytes sent via SQL*Net to client
        588  bytes received via SQL*Net from client
          2  SQL*Net roundtrips to/from client
          0  sorts (memory)
          0  sorts (disk)
         10  rows processed

 

The CBO has no choice but to use a FTS as I don’t yet have an index on the CODE column.

If I now wait for the next Automatic Indexing task to kick in AND if there are still NO statistics on the table:

 

SQL> select dbms_auto_index.report_last_activity('text', 'ALL', 'ALL' ) report from dual;

REPORT

--------------------------------------------------------------------------------
GENERAL INFORMATION
-------------------------------------------------------------------------------
Activity start               : 05-JUL-2020 06:36:31
Activity end                 : 05-JUL-2020 06:37:07
Executions completed         : 1
Executions interrupted       : 0
Executions with fatal error  : 0
-------------------------------------------------------------------------------

SUMMARY (AUTO INDEXES)
-------------------------------------------------------------------------------
Index candidates            : 1
Indexes created             : 0
Space used                  : 0 B
Indexes dropped             : 0
SQL statements verified     : 0
SQL statements improved     : 0
SQL plan baselines created  : 0
Overall improvement factor  : 0x
-------------------------------------------------------------------------------

SUMMARY (MANUAL INDEXES)
-------------------------------------------------------------------------------
Unused indexes    : 0
Space used        : 0 B
Unusable indexes  : 0

 

You can see that there was the one index candidate BUT no Automatic Index appears to have been created.

Assuming there are still no statistics:

 

SQL> select table_name, num_rows, blocks, last_analyzed from user_tables where table_name='BOWIE_STALE';

TABLE_NAME                       NUM_ROWS    BLOCKS  LAST_ANAL
------------------------------ ---------- ---------- ---------
BOWIE_STALE

SQL> select column_name, num_distinct, density, histogram, last_analyzed from user_tab_cols
where table_name='BOWIE_STALE2';

COLUMN_NAME          NUM_DISTINCT    DENSITY HISTOGRAM       LAST_ANAL
-------------------- ------------ ---------- --------------- ---------
ID                                           NONE
CODE                                         NONE
NAME                                         NONE

 

If we look now at what indexes exist on the table:

SQL> select index_name, auto, constraint_index, visibility, compression, status, num_rows, leaf_blocks, clustering_factor
from user_indexes where table_name='BOWIE_STALE';

INDEX_NAME                     AUT CON VISIBILIT COMPRESSION   STATUS     NUM_ROWS LEAF_BLOCKS CLUSTERING_FACTOR
------------------------------ --- --- --------- ------------- -------- ---------- ----------- -----------------
BOWIE_STALE_PK                 NO  YES VISIBLE   DISABLED      VALID
SYS_AI_300kk2unp8tr0           YES NO  INVISIBLE DISABLED      UNUSABLE          0           0                 0

SQL> select index_name, column_name, column_position from user_ind_columns
where table_name='BOWIE_STALE2' order by index_name, column_position;

INDEX_NAME                     COLUMN_NAME          COLUMN_POSITION
------------------------------ -------------------- ---------------
BOWIE_STALE_PK                 ID                                 1
SYS_AI_300kk2unp8tr0           CODE                               1

 

We notice there is now an Automatic Index BUT it remains in an UNUSABLE/INVISIBLE state. This means the index can’t be used by the CBO.

So if we now re-run the SQL query again:

 

SQL> select * from bowie_stale where code=42;

10 rows selected.

Execution Plan

-----------------------------------------------------------------------------------------
| Id | Operation                | Name        | Rows | Bytes | Cost (%CPU)| Time        |
-----------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT         |             |  437 | 21413 |    553 (16)| 00:00:01    |
|* 1 | TABLE ACCESS STORAGE FULL| BOWIE_STALE |  437 | 21413 |    553 (16)| 00:00:01    |
-----------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("CODE"=42)
    filter("CODE"=42)

Note
-----
- dynamic statistics used: dynamic sampling (level=2)
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          6  recursive calls
          0  db block gets
      39026  consistent gets
          0  physical reads
          0  redo size
        867  bytes sent via SQL*Net to client
        588  bytes received via SQL*Net from client
          2  SQL*Net roundtrips to/from client
          0  sorts (memory)
          0  sorts (disk)
         10  rows processed

 

The CBO has no choice still but to use the FTS.

In Part II, we’ll see that once we get into this scenario, it can be a tad problematic to get ourselves out of it and get the Automatic Index created as we would like…

Oracle 19c Automatic Indexing: Data Skew Fixed By Baselines Part II (Sound And Vision) September 28, 2020

Posted by Richard Foote in 19c, 19c New Features, Automatic Indexing, Autonomous Data Warehouse, Autonomous Database, Autonomous Transaction Processing, Baselines, CBO, Data Skew, Exadata, Explain Plan For Index, Full Table Scans, Histograms, Index Access Path, Index statistics, Oracle, Oracle Blog, Oracle Cloud, Oracle Cost Based Optimizer, Oracle General, Oracle Indexes, Oracle Statistics, Oracle19c, Performance Tuning.
add a comment

 

In my previous post, I discussed how the Automatic Indexing task by using Dynamic Sampling Level=11 can correctly determine the correct query cardinality estimates and assume the CBO will likewise determine the correct cardinality estimate and NOT use an index if it would cause performance to regress.

However, if other database sessions DON’T use Dynamic Sampling at the same Level=11 and hence NOT determine correct cardinality estimates, newly created Automatic Indexes might get used by the CBO inappropriately and result inefficient execution plans.

Likewise, with incorrect CBO cardinality estimates, it might also be possible for newly created Automatic Indexes to NOT be used when they should be (as I’ve discussed previously).

These are potential issues if the Dynamic Sampling value differs between the Automatic Indexing task and other database sessions.

One potential way to make things more consistent and see how the Automatic Indexing behaves if it detects an execution plan where the CBO would use an Automatic Index that causes performance regression, is to disable Dynamic Sampling within the Automatic Indexing task.

This can be easily achieved by using the following hint which effectively disables Dynamic Sampling with the previous problematic query:

SQL> select /*+ dynamic_sampling(0) */ * from space_oddity where code in (190000, 170000, 150000, 130000, 110000, 90000, 70000, 50000, 30000, 10000);

1000011 rows selected.

Execution Plan
----------------------------------------------------------------------------------
| Id  | Operation         | Name         | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |              |  1005K|   135M| 11411   (1)| 00:00:01 |
|*  1 |  TABLE ACCESS FULL| SPACE_ODDITY |  1005K|   135M| 11411   (1)| 00:00:01 |
----------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - filter("CODE"=10000 OR "CODE"=30000 OR "CODE"=50000 OR
           "CODE"=70000 OR "CODE"=90000 OR "CODE"=110000 OR "CODE"=130000 OR
           "CODE"=150000 OR "CODE"=170000 OR "CODE"=190000)

Statistics
----------------------------------------------------------
          0  recursive calls
          0  db block gets
      41169  consistent gets
          0  physical reads
          0  redo size
   13535504  bytes sent via SQL*Net to client
       2705  bytes received via SQL*Net from client
        202  SQL*Net roundtrips to/from client
          0  sorts (memory)
          0  sorts (disk)
    1000011  rows processed

 

The query currently has good cardinality estimates (1005K vs 1000011 rows returned) only because we currently have histograms in place for the CODE column. As such, the query correctly uses a FTS.

However, if we now remove the histogram on the CODE column:

SQL> exec dbms_stats.gather_table_stats(null, 'SPACE_ODDITY', method_opt=> 'FOR ALL COLUMNS SIZE 1’);

PL/SQL procedure successfully completed.

 

There is no way for the CBO to now determine the correct cardinality estimate because of the skewed data and missing histograms.

So what does the Automatic Indexing tasks make of things now. If we look at the next activity report:

 

SQL> select dbms_auto_index.report_last_activity() report from dual;

REPORT
--------------------------------------------------------------------------------
GENERAL INFORMATION
-------------------------------------------------------------------------------
Activity start               : 18-AUG-2020 16:42:33
Activity end                 : 18-AUG-2020 16:43:06
Executions completed         : 1
Executions interrupted       : 0
Executions with fatal error  : 0
-------------------------------------------------------------------------------

SUMMARY (AUTO INDEXES)
-------------------------------------------------------------------------------
Index candidates                             : 0
Indexes created                              : 0
Space used                                   : 0 B
Indexes dropped                              : 0
SQL statements verified                      : 1
SQL statements improved                      : 0
SQL plan baselines created (SQL statements)  : 1 (1)
Overall improvement factor                   : 0x
-------------------------------------------------------------------------------

SUMMARY (MANUAL INDEXES)
-------------------------------------------------------------------------------
Unused indexes    : 0
Space used        : 0 B
Unusable indexes  : 0

We can see that it has verified this one new statement and has created 1 new SQL Plan Baseline as a result.

If we look at the Verification Details part of this report:

 

VERIFICATION DETAILS
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
The following SQL plan baselines were created:
-------------------------------------------------------------------------------
Parsing Schema Name     : BOWIE
SQL ID                  : 3yz8unzhhvnuz
SQL Text                : select /*+ dynamic_sampling(0) */ * from
space_oddity where code in (190000, 170000, 150000,
130000, 110000, 90000, 70000, 50000, 30000, 10000)
SQL Signature           : 3910785437403172730
SQL Handle              : SQL_3645e6a2952fcf7a
SQL Plan Baselines (1)  : SQL_PLAN_3cjg6naakzmvu198c05b9

We can see Automatic Indexing has created a new SQL Plan Baseline for our query with Dynamic Sampling set to 0 thanks to the hint.

Basically, the Automatic Indexing task has found a new query and determined the CBO would be inclined to use the index, because it now incorrectly assumes few rows are to be returned. It makes the poor cardinality estimate because there are currently no histograms in place AND because it can’t now use Dynamic Sampling to get a more accurate picture of things on the fly because it has been disabled with the dynamic_sampling(0) hint.

Using an Automatic Index over the current FTS plan would make the performance of the SQL regress.

Therefore, to protect the current FTS plan, Automatic Indexing has created a SQL Plan Baseline that effectively forces the CBO to use the current, more efficient FTS plan.

This can be confirmed by looking at the DBA_AUTO_INDEX_VERIFICATIONS view:

 

SQL> select execution_name, original_buffer_gets, auto_index_buffer_gets, status
from dba_auto_index_verifications where sql_id = '3yz8unzhhvnuz';

EXECUTION_NAME             ORIGINAL_BUFFER_GETS AUTO_INDEX_BUFFER_GETS STATUS
-------------------------- -------------------- ---------------------- ---------
SYS_AI_2020-08-18/16:42:33                41169                 410291 REGRESSED

 

If we now re-run the SQL again (noting we still don’t have histograms on the CODE column):

SQL> select /*+ dynamic_sampling(0) */ * from space_oddity where code in (190000, 170000, 150000, 130000, 110000, 90000, 70000, 50000, 30000, 10000);

1000011 rows selected.

Execution Plan
----------------------------------------------------------------------------------
| Id  | Operation         | Name         | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |              |    32 |  4512 | 11425   (2)| 00:00:01 |
|*  1 |  TABLE ACCESS FULL| SPACE_ODDITY |    32 |  4512 | 11425   (2)| 00:00:01 |
----------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - filter("CODE"=10000 OR "CODE"=30000 OR "CODE"=50000 OR
           "CODE"=70000 OR "CODE"=90000 OR "CODE"=110000 OR "CODE"=130000 OR
           "CODE"=150000 OR "CODE"=170000 OR "CODE"=190000)

Hint Report (identified by operation id / Query Block Name / Object Alias):

Total hints for statement: 1 (U - Unused (1))
---------------------------------------------------------------------------
1 -  SEL$1
U -  dynamic_sampling(0) / rejected by IGNORE_OPTIM_EMBEDDED_HINTS

Note
-----

- SQL plan baseline "SQL_PLAN_3cjg6naakzmvu198c05b9" used for this statement

Statistics
----------------------------------------------------------
          9  recursive calls
          4  db block gets
      41170  consistent gets
          0  physical reads
          0  redo size
   13535504  bytes sent via SQL*Net to client
       2705  bytes received via SQL*Net from client
        202  SQL*Net roundtrips to/from client
          0  sorts (memory)
          0  sorts (disk)
    1000011  rows processed

 

We can see the CBO is forced to use the SQL Plan Baseline “SQL_PLAN_3cjg6naakzmvu198c05b9” as created by the Automatic Indexing task to ensure the more efficient FTS is used and not the available Automatic Index.

So Automatic Indexing CAN create SQL PLan Baselines to protect SQL from performance regressions caused by inappropriate use of Automatic Indexes BUT it’s really hard and difficult for it to do this effectively if the Automatic Indexing tasks and other database sessions have differing Dynamic Sampling settings as it does by default…

Oracle 19c Automatic Indexing: Data Skew Fixed By Baselines Part I (The Prettiest Star)) September 25, 2020

Posted by Richard Foote in 19c, 19c New Features, Autonomous Data Warehouse, Autonomous Database, Autonomous Transaction Processing, Baselines, CBO, Data Skew, Exadata, Full Table Scans, Histograms, Index Access Path, Oracle, Oracle Cloud, Oracle Cost Based Optimizer, Oracle General, Oracle Indexes, Oracle Statistics, Oracle19c, Performance Tuning.
1 comment so far

In my previous few blog posts, I’ve been discussing some issues in relation to how Automatic Indexes handle SQL statements that accesses skewed data. In this post, I’m going to setup the scenario in which Automatic Indexing can potentially use Baselines to help address some of these issues. BUT, as we’ll see, I’m having to manufacture things somewhat to make this work due to the problem of the Automatic Indexing task using Dynamic Sampling of level 11, whereas most usual database sessions do not.

To set things up, I’m going recap what I’ve previously discussed (but with a slight difference), by creating a table that has significant data skew on the CODE column, with most values very uncommon, but with a handful of values being very common:

SQL> create table space_oddity (id number constraint space_oddity_pk primary key, code number, name varchar2(142));

Table created.

SQL> begin
2     for i in 1..2000000 loop
3       if mod(i,2) = 0 then
4          insert into space_oddity values(i, ceil(dbms_random.value(0,1000000)), 'David Bowie is really Ziggy Stardust and his band are called The Spiders From Mars. Then came Aladdin Sane and the rest is history');
5       else
6          insert into space_oddity values(i, mod(i,20)*10000, 'Ziggy Stardust is really David Bowie and his band are called The Spiders From Mars. Then came Aladdin Sane and the rest is history.');
7       end if;
8     end loop;
9     commit;
10  end;
11  /

PL/SQL procedure successfully completed.

 

So most CODE values will only occur a few times if at all, but a few values divisible by 10000 have many many occurrences within the table.

Importantly, we will initially collect statistics with NO histograms on the CODE column, which is the default behaviour anyways if no SQL has previous run with predicates on the column:

SQL> exec dbms_stats.gather_table_stats(null, 'SPACE_ODDITY', method_opt=> 'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

 

If we run a query based on a rare value for CODE:

SQL> set arraysize 5000

SQL> select * from space_oddity where code=25;

Execution Plan
----------------------------------------------------------------------------------
| Id  | Operation         | Name         | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |              |     3 |   423 | 11356   (1)| 00:00:01 |
|*  1 |  TABLE ACCESS FULL| SPACE_ODDITY |     3 |   423 | 11356   (1)| 00:00:01 |
----------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - filter("CODE"=25)

Statistics
----------------------------------------------------------
          0  recursive calls
          0  db block gets
      40974  consistent gets
          0  physical reads
          0  redo size
       1018  bytes sent via SQL*Net to client
        402  bytes received via SQL*Net from client
          2  SQL*Net roundtrips to/from client
          0  sorts (memory)
          0  sorts (disk)
          2  rows processed

 

Without an index, the CBO has no choice at this point but to perform a FTS. BUT note that the 2 rows returned is very similar to the 3 estimated rows, which would make an index likely the way to go if such an index existed.

However, the following SQL accesses many of the common values of CODE and returns many rows:

SQL> select * from space_oddity where code in (10000, 30000, 50000, 70000, 90000, 110000, 130000, 150000, 170000, 190000);

1000011 rows selected.

Execution Plan
----------------------------------------------------------------------------------
| Id  | Operation         | Name         | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |              |    32 |  4512 | 11425   (2)| 00:00:01 |
|*  1 |  TABLE ACCESS FULL| SPACE_ODDITY |    32 |  4512 | 11425   (2)| 00:00:01 |
----------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - filter("CODE"=10000 OR "CODE"=30000 OR "CODE"=50000 OR
           "CODE"=70000 OR "CODE"=90000 OR "CODE"=110000 OR "CODE"=130000 OR
           "CODE"=150000 OR "CODE"=170000 OR "CODE"=190000)

Statistics
----------------------------------------------------------
          0  recursive calls
          0  db block gets
      41169  consistent gets
          0  physical reads
          0  redo size
   13535504  bytes sent via SQL*Net to client
       2678  bytes received via SQL*Net from client
        202  SQL*Net roundtrips to/from client
          0  sorts (memory)
          0  sorts (disk)
    1000011  rows processed

 

Again, without an index in place, the CBO has no choice but to perform a FTS but this is almost certainly the way to go regardless. BUT without a histogram on the CODE column, the CBO has got the cardinality estimate way way off and thinks only 32 rows are to be returned and not the actual 1000011 rows.

So what does Automatic Indexing make of things. Let’s wait and have a look at the next Automatic Indexing Report:

 

SQL> select dbms_auto_index.report_last_activity() report from dual;

REPORT
--------------------------------------------------------------------------------
GENERAL INFORMATION
-------------------------------------------------------------------------------
Activity start               : 18-AUG-2020 15:57:14
Activity end                 : 18-AUG-2020 15:58:10
Executions completed         : 1
Executions interrupted       : 0
Executions with fatal error  : 0
-------------------------------------------------------------------------------

SUMMARY (AUTO INDEXES)
-------------------------------------------------------------------------------
Index candidates                              : 1
Indexes created (visible / invisible)         : 1 (1 / 0)
Space used (visible / invisible)              : 35.65 MB (35.65 MB / 0 B)
Indexes dropped                               : 0
SQL statements verified                       : 1
SQL statements improved (improvement factor)  : 1 (40984.3x)
SQL plan baselines created                    : 0
Overall improvement factor                    : 40984.3x
-------------------------------------------------------------------------------

SUMMARY (MANUAL INDEXES)
-------------------------------------------------------------------------------
Unused indexes    : 0
Space used        : 0 B
Unusable indexes  : 0

INDEX DETAILS
-------------------------------------------------------------------------------
The following indexes were created:
----------------------------------------------------------------------------
| Owner | Table        | Index                | Key  | Type   | Properties |
----------------------------------------------------------------------------
| BOWIE | SPACE_ODDITY | SYS_AI_82bdnqs7q8rtm | CODE | B-TREE | NONE       |
----------------------------------------------------------------------------

 

So Automatic Indexing has indeed created the index (SYS_AI_82bdnqs7q8rtm) on the CODE column BUT this is based on only the one SQL statement:

 

VERIFICATION DETAILS
-------------------------------------------------------------------------------
The performance of the following statements improved:
-------------------------------------------------------------------------------
Parsing Schema Name  : BOWIE
SQL ID               : 19sv1g6tt0g1y
SQL Text             : select * from space_oddity where code=25
Improvement Factor   : 40984.3x

Execution Statistics:
-----------------------------

                   Original Plan                 Auto Index Plan
                   ----------------------------  ----------------------------
Elapsed Time (s):  5417408                       139265
CPU Time (s):      1771880                       7797
Buffer Gets:       327876                        5
Optimizer Cost:    11356                         5
Disk Reads:        649                           2
Direct Writes:     0                             0
Rows Processed:    16                            2
Executions:        8                             1

 

The Automatic Indexing task has correctly identified a significant improvement of 40984.3x when using an index on the SQL statement that returned just the 2 rows. The other SQL statement that returns many rows IS NOT MENTIONED.

This is because the Automatic Indexing tasks uses Dynamic Sampling Level=11, meaning it determines the more accurate cardinality estimate on the fly and correctly identifies that a vast number of rows are going to be returned. As a result, it correctly determines that the new Automatic Indexing if used would be detrimental to performance and would not be used by the CBO.

BUT most importantly, it also makes the assumption that the CBO would automatically likewise make this same decision to NOT use any such index in other database sessions and so there’s nothing to protect.

BUT this assumption is incorrect IF other database sessions don’t likewise use Dynamic Sampling with Level=11.

BUT by default, including in Oracle’s Autonomous Database Transaction Processing Cloud environment, the Dynamic Sampling Level is NOT set to 11, but the 2.

Therefore, most database sessions will not be able to determine the correct cardinality estimate on the fly and so will incorrectly assume the number of returned rows is much less than in reality and potentially use any such new Automatic Index inappropriately…

So if we look at the Plans Section of the Automatic Indexing report:

 

PLANS SECTION

---------------------------------------------------------------------------------------------
- Original
-----------------------------

Plan Hash Value  : 2301175572
-----------------------------------------------------------------------------
| Id | Operation           | Name         | Rows | Bytes | Cost  | Time     |
-----------------------------------------------------------------------------
|  0 | SELECT STATEMENT    |              |      |       | 11356 |          |
|  1 |   TABLE ACCESS FULL | SPACE_ODDITY |    3 |   423 | 11356 | 00:00:01 |
-----------------------------------------------------------------------------

- With Auto Indexes

-----------------------------
Plan Hash Value  : 54782313
-------------------------------------------------------------------------------------------------------
| Id  | Operation                             | Name                 | Rows | Bytes | Cost | Time     |
-------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                      |                      |    3 |   423 |    5 | 00:00:01 |
|   1 |   TABLE ACCESS BY INDEX ROWID BATCHED | SPACE_ODDITY         |    3 |   423 |    5 | 00:00:01 |
| * 2 |    INDEX RANGE SCAN                   | SYS_AI_82bdnqs7q8rtm |    2 |       |    3 | 00:00:01 |
-------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
------------------------------------------

* 2 - access("CODE"=25)

Notes
-----

- Dynamic sampling used for this statement ( level = 11 )

 

The new plan for the SQL returning 2 rows when using the new Automatic Index and is much more efficient with a significantly reduced cost (just 3 down from 11356).

But again, the plans for the SQL that returns many rows are not listed as the Automatic Indexing task has already determined that an index would make such a plan significantly less efficient.

If we now rerun the SQL the returns many rows (and BEFORE High Frequency Collection Statistics potentially kicks in):

SQL> select * from space_oddity where code in (10000, 30000, 50000, 70000, 90000, 110000, 130000, 150000, 170000, 190000);

1000011 rows selected.

Execution Plan
-------------------------------------------------------------------------------------------------------------
| Id  | Operation                            | Name                 | Rows  | Bytes | Cost (%CPU)| Time     |
-------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                     |                      |    32 |  4512 |    35   (0)| 00:00:01 |
|   1 |  INLIST ITERATOR                     |                      |       |       |            |          |
|   2 |   TABLE ACCESS BY INDEX ROWID BATCHED| SPACE_ODDITY         |    32 |  4512 |    35   (0)| 00:00:01 |
|*  3 |    INDEX RANGE SCAN                  | SYS_AI_82bdnqs7q8rtm |    32 |       |    12   (0)| 00:00:01 |
-------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
3 - access("CODE"=10000 OR "CODE"=30000 OR "CODE"=50000 OR "CODE"=70000 OR "CODE"=90000 OR
           "CODE"=110000 OR "CODE"=130000 OR "CODE"=150000 OR "CODE"=170000 OR "CODE"=190000)

Statistics
----------------------------------------------------------
          0  recursive calls
          0  db block gets
     410422  consistent gets
          0  physical reads
          0  redo size
  145536076  bytes sent via SQL*Net to client
       2678  bytes received via SQL*Net from client
        202  SQL*Net roundtrips to/from client
          0  sorts (memory)
          0  sorts (disk)
    1000011  rows processed

 

Note that the cardinality estimate is still way way wrong, thinking that just 32 rows are to be returned, when is fact 1000011 rows are returned.

As a result, the CBO has decided to incorrectly use the new Automatic Index. Incorrectly, in that the number of consistent gets has increased 10x from the previous FTS plan (410,422 now, up from 41,169).

One way to resolve this is to collect histograms on the CODE column (or wait for the High Frequency Stats Collection to kick in):

SQL> exec dbms_stats.gather_table_stats(null, 'SPACE_ODDITY', method_opt=> 'FOR ALL COLUMNS SIZE 2048’);

PL/SQL procedure successfully completed.

If we now re-run this SQL:

SQL> select * from space_oddity where code in (190000, 170000, 150000, 130000, 110000, 90000, 70000, 50000, 30000, 10000);

1000011 rows selected.

Execution Plan
----------------------------------------------------------------------------------
| Id  | Operation         | Name         | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |              |   996K|   133M| 11411   (1)| 00:00:01 |
|*  1 |  TABLE ACCESS FULL| SPACE_ODDITY |   996K|   133M| 11411   (1)| 00:00:01 |
----------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter("CODE"=10000 OR "CODE"=30000 OR "CODE"=50000 OR
           "CODE"=70000 OR "CODE"=90000 OR "CODE"=110000 OR "CODE"=130000 OR
           "CODE"=150000 OR "CODE"=170000 OR "CODE"=190000)

Statistics
----------------------------------------------------------
          0  recursive calls
          0  db block gets
      41169  consistent gets
          0  physical reads
          0  redo size
   13535504  bytes sent via SQL*Net to client
       2678  bytes received via SQL*Net from client
        202  SQL*Net roundtrips to/from client
          0  sorts (memory)
          0  sorts (disk)
    1000011  rows processed

 

The cardinality estimate is now much more accurate and the the execution plan now uses the more efficient FTS.

In Part II, we’ll look at how the Automatic Indexing tasks can be made to identify the dangers of a new index to SQLs that might degrade in performance and how it will create a Baseline to protect against any such SQL regressions….

Oracle 19c Automatic Indexing: CBO Incorrectly Using Auto Indexes Part II ( Sleepwalk) September 21, 2020

Posted by Richard Foote in 19c, 19c New Features, Automatic Indexing, Autonomous Data Warehouse, Autonomous Database, Autonomous Transaction Processing, CBO, Data Skew, Dynamic Sampling, Exadata, Explain Plan For Index, Extended Statistics, Hints, Histograms, Index Access Path, Index statistics, Oracle, Oracle Cloud, Oracle Cost Based Optimizer, Oracle Indexes, Oracle19c, Performance Tuning.
add a comment

As I discussed in Part I of this series, problems and inconsistencies can appear between what the Automatic Indexing processing thinks will happen with newly created Automatic Indexing and what actually happens in other database sessions. This is because the Automatic Indexing process session uses a much higher degree of Dynamic Sampling (Level=11) than other database sessions use by default (Level=2).

As we saw in Part I, an SQL statement may be deemed to NOT use an index in the Automatic Indexing deliberations, where it is actually used in normal database sessions (and perhaps incorrectly so). Where the data is heavily skewed and current statistics are insufficient for the CBO to accurately detect such “skewness” is one such scenario where we might encounter this issue.

One option to get around this is to hint any such queries with a Dynamic Sampling value that matches that of the Automatic Indexing process (or sufficient to determine more accurate cardinality estimates).

If we re-run the problematic query from Part I (where a new Automatic Index was inappropriately used by the CBO) with such a Dynamic Sampling hint:

SQL> select /*+ dynamic_sampling(11) */ * from iggy_pop where code1=42 and code2=42;

100000 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 3288467

--------------------------------------------------------------------------------------
| Id | Operation                | Name     | Rows | Bytes | Cost (%CPU)| Time        |
--------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT         |          |  100K|  2343K|    575 (15)| 00:00:01    |
|* 1 | TABLE ACCESS STORAGE FULL| IGGY_POP |  101K|  2388K|    575 (15)| 00:00:01    |
--------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("CODE1"=42 AND "CODE2"=42)
    filter("CODE1"=42 AND "CODE2"=42)

Note
-----
- dynamic statistics used: dynamic sampling (level=AUTO)
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
      40964 consistent gets
      40953 physical reads
          0 redo size
    1092240 bytes sent via SQL*Net to client
        609 bytes received via SQL*Net from client
         21 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
     100000 rows processed

We can see that the CBO this time correctly calculated the cardinality and hence correctly decided against the use of the Automatic Index.

Although these parameters can’t be changed in the Oracle Autonomous Database Cloud services, on the Exadata platform if using Automatic Indexing you might want to consider setting the OPTIMIZER_DYNAMIC_SAMPLING parameter to 11 (and/or OPTIMIZER_ADAPTIVE_STATISTICS=true)  in order to be consistent with the Automatic Indexing process. These settings can obviously add significant overhead during parsing and so need to be set with caution.

In this scenario where there is an inherent relationship between columns which the CBO is not detecting, the creation of Extended Statistics can be beneficial.

We currently have the following columns and statistics on the IGGY_POP table:

SQL> select column_name, num_distinct, density, num_buckets, histogram
from user_tab_cols where table_name='IGGY_POP';

COLUMN_NAME          NUM_DISTINCT    DENSITY NUM_BUCKETS HISTOGRAM
-------------------- ------------ ---------- ----------- ---------------
ID                        9705425          0         254 HYBRID
CODE1                         100  .00000005         100 FREQUENCY
CODE2                         100  .00000005         100 FREQUENCY
NAME                            1 5.0210E-08           1 FREQUENCY

 

If we now collect Extended Statistics on both CODE1, CODE2 columns:

SQL> exec dbms_stats.gather_table_stats(ownname=>null, tabname=>'IGGY_POP', method_opt=> 'FOR COLUMNS (CODE1,CODE2) SIZE 254');

PL/SQL procedure successfully completed.

SQL> select column_name, num_distinct, density, num_buckets, histogram from user_tab_cols where table_name='IGGY_POP';

COLUMN_NAME                    NUM_DISTINCT    DENSITY NUM_BUCKETS HISTOGRAM
------------------------------ ------------ ---------- ----------- ---------------
ID                                  9705425          0         254 HYBRID
CODE1                                   100  .00000005         100 FREQUENCY
CODE2                                   100  .00000005         100 FREQUENCY
NAME                                      1 5.0210E-08           1 FREQUENCY
SYS_STU#29QF8Y9BUDOW2HCDL47N44           99  .00000005         100 FREQUENCY

 

The CBO now has some idea on the cardinality if both columns are used within a predicate.

If we re-run the problematic query without the hint:

 

SQL> select * from iggy_pop where code1=42 and code2=42;

100000 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 3288467

--------------------------------------------------------------------------------------
| Id | Operation                | Name     | Rows | Bytes | Cost (%CPU)| Time        |
--------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT         |          |  100K|  2343K|    575 (15)| 00:00:01    |
|* 1 | TABLE ACCESS STORAGE FULL| IGGY_POP |  100K|  2343K|    575 (15)| 00:00:01    |
--------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("CODE1"=42 AND "CODE2"=42)
    filter("CODE1"=42 AND "CODE2"=42)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
      40964 consistent gets
      40953 physical reads
          0 redo size
    1092240 bytes sent via SQL*Net to client
        581 bytes received via SQL*Net from client
         21 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
     100000 rows processed

 

Again, the CBO is correctly the cardinality estimate of 100K rows and so is NOT using the Automatic Index.

However, we can still get ourselves in problems. If I now re-run the query that returns no rows and was previously correctly using the Automatic Index:

SQL> select code1, code2, name from iggy_pop where code1=1 and code2=42;

no rows selected

Execution Plan
----------------------------------------------------------
Plan hash value: 3288467

--------------------------------------------------------------------------------------
| Id | Operation                | Name     | Rows  | Bytes | Cost (%CPU)| Time       |
--------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT         |          | 50000 |  878K |   575 (15) | 00:00:01   |
|* 1 | TABLE ACCESS STORAGE FULL| IGGY_POP | 50000 |  878K |   575 (15) | 00:00:01   |
--------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("CODE1"=1 AND "CODE2"=42)
    filter("CODE1"=1 AND "CODE2"=42)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
      40964 consistent gets
      40953 physical reads
          0 redo size
        368 bytes sent via SQL*Net to client
        377 bytes received via SQL*Net from client
          1 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
          0 rows processed

We see that the CBO is now getting this execution plan wrong and is now estimating incorrectly that 50,000 rows are to be returned (and not the 1000 rows it estimated previously). This increased estimate is now deemed too expensive for the Automatic Index to retrieve and is now incorrectly using a FTS.

This because with a Frequency based histogram now in place, Oracle assumes that 50% of the lowest recorded frequency within the histogram is returned (100,000 x 0.5 = 50,000) if the values don’t exist but resided within the known min-max range of values.

So we need to be very careful HOW we potentially collect any additional statistics and its potential impact on other SQL statements.

 

As I’ll discuss next, another alternative to get more consistent behavior with Automatic Indexing in these types of scenarios is to make the Automatic Indexing processing session appear more like other database sessions…

Oracle 19c Automatic Indexing: Data Skew Part II (Everything’s Alright) September 14, 2020

Posted by Richard Foote in 19c, 19c New Features, Automatic Indexing, Automatic Table Statistics, Autonomous Transaction Processing, Data Skew, Exadata, High Frequency Statistics Collection, Histograms, Oracle, Oracle Cost Based Optimizer, Oracle General, Oracle Indexes, Oracle Statistics, Performance Tuning.
3 comments

In my previous post, I discussed an example with data skew, in which the Automatic Indexing process created a new index, but somehow the CBO when using the index estimated the correct cardinality estimate even though no histograms were explicitly calculated.

In this post I’ll answer HOW this achieved by the CBO.

Get some idea on the answer by now looking at the column details:

SQL> select column_name, num_buckets, histogram from user_tab_cols
where table_name='BOWIE_SKEW';

COLUMN_NAME     NUM_BUCKETS HISTOGRAM
--------------- ----------- ---------------
ID                        1 NONE
CODE                     10 FREQUENCY
NAME                      1 NONE

We can see that there is now indeed an histogram on the column. When and how were these histograms collected?

The answer lies with a new Oracle Database 19c feature called “High-Frequency Automatic Statistics Collection“, which is available on Exadata environments. As I’m running all these demos on the Oracle Autonomous Transaction Processing Cloud environment which runs on an Exadata platform, this feature is enabled by default.

To highlight the capabilities of this features more fully, I’m going to setup a slightly different demo with three tables:

SQL> create table bowie1 (id number, code number, name varchar2(42));  <= Stale with no stats

Table created.

SQL> insert into bowie1 select rownum, mod(rownum, 100)+1, 'David Bowie' from dual connect by level <= 100000;

100000 rows created.

SQL> commit;

Commit complete.

 

Table BOWIE1 has no statistics collected on it.

 

SQL> create table bowie2 (id number, code number, name varchar2(42));

Table created.

SQL> insert into bowie2 select rownum, mod(rownum, 100)+1, 'David Bowie' from dual connect by level <= 100000;

100000 rows created.

SQL> commit;

Commit complete.

SQL> exec dbms_stats.gather_table_stats(ownname=>null, tabname=>'BOWIE2');

PL/SQL procedure successfully completed.

SQL> insert into bowie2 select rownum+100000, mod(rownum, 100)+1, 'Ziggy Stardust' from dual connect by level <= 50000;

50000 rows created.

SQL> commit;

Commit complete.

 

BOWIE2 table has new rows added after statistics have been collected and so has “stale” outdated stats.

 

SQL> create table bowie3 (id number, code number, name varchar2(42));

Table created.

SQL> insert into bowie3 select rownum, 10, 'DAVID BOWIE' from dual connect by level <=1000000;

1000000 rows created.

SQL> update bowie3 set code = 9 where mod(id,3) = 0;

333333 rows updated.

SQL> update bowie3 set code = 1 where mod(id,2) = 0 and id between 1 and 20000;

10000 rows updated.

SQL> update bowie3 set code = 2 where mod(id,2) = 0 and id between 30001 and 40000;

5000 rows updated.

SQL> update bowie3 set code = 3 where mod(id,100) = 0 and id between 300001 and 400000;

1000 rows updated.

SQL> update bowie3 set code = 4 where mod(id,100) = 0 and id between 400001 and 500000;

1000 rows updated.

SQL> update bowie3 set code = 5 where mod(id,100) = 0 and id between 600001 and 700000;

1000 rows updated.

SQL> update bowie3 set code = 6 where mod(id,1000) = 0 and id between 700001 and 800000;

100 rows updated.

SQL> update bowie3 set code = 7 where mod(id,1000) = 0 and id between 800001 and 900000;

100 rows updated.

SQL> update bowie3 set code = 8 where mod(id,1000) = 0 and id between 900001 and 1000000;

100 rows updated.

SQL> commit;

Commit complete.

SQL> exec dbms_stats.gather_table_stats(ownname=>null, tabname=>'bowie3', estimate_percent=>100, method_opt=>'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

SQL> select code, count(*) from bowie3 group by code order by code;

      CODE   COUNT(*)
---------- ----------
         1      10000
         2       5000
         3       1000
         4       1000
         5       1000
         6        100
         7        100
         8        100
         9     327235
        10     654465

 

The BOWIE3 table is as my previous example, with data skew but with NO histograms collected. I’m now going to run a query on BOWIE3 where the CBO gets the cardinality estimate hopelessly wrong because of the missing histogram on the CODE column:

SQL> select * from bowie3 where code=7;

100 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 2517725203

----------------------------------------------------------------------------
| Id  | Operation         | Name   | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |        |   100K|  1953K|   974   (2)| 00:00:01 |
|*  1 |  TABLE ACCESS FULL| BOWIE3 |   100K|  1953K|   974   (2)| 00:00:01 |
----------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - filter("CODE"=7)

 

If we look at the current statistics on these tables:

 

SQL> select table_name, num_rows, stale_stats, notes from user_tab_statistics
where table_name in ('BOWIE1', 'BOWIE2', 'BOWIE3');

TABLE_NAME        NUM_ROWS STALE_S NOTES
--------------- ---------- ------- ------------------------------
BOWIE1
BOWIE2              100000 YES
BOWIE3             1000000 NO
BOWIE2              150000         STATS_ON_CONVENTIONAL_DML

 

We can see that BOWIE1 has indeed no statistics.

BOWIE2 is marked as having state statistics, although thanks to another Oracle Database 19c feature called “Real-Time Statistics Collection“, does have some additional statistics captured (such as NUM_ROWS) when the additional rows were inserted. I’ll discuss this feature more fully in a later blog article.

BOWIE3 is considered fine in that it does have statistics which are NOT stale, BUT…

 

SQL> select column_name, num_buckets, histogram from user_tab_col_statistics
where table_name='BOWIE3';

COLUMN_NAME     NUM_BUCKETS HISTOGRAM
--------------- ----------- ---------------
ID                        1 NONE
CODE                      1 NONE
NAME                      1 NONE

We don’t currently have any histograms even though a simple single table query was previously run based on a CODE predicate which had hopelessly inaccurate cardinality estimates.

If we wait approximately 15 minutes (default) for the High-Frequency Automatic Statistics Collection process to run and look at these column statistics again:

SQL> select table_name, num_rows, stale_stats from user_tab_statistics
where table_name in ('BOWIE1', 'BOWIE2', 'BOWIE3');

TABLE_NAME        NUM_ROWS STALE_S
--------------- ---------- -------
BOWIE1              100000 NO
BOWIE2              150000 NO
BOWIE3             1000000 NO

SQL> select column_name, num_buckets, histogram from user_tab_col_statistics where table_name='BOWIE3';

COLUMN_NAME     NUM_BUCKETS HISTOGRAM
--------------- ----------- ---------------
ID                        1 NONE
CODE                     10 FREQUENCY
NAME                      1 NONE

 

We now notice that:

BOWIE1 now has statistics captured, as the High-Frequency Automatic Statistics Collection process looks for tables with missing statistics.

BOWIE2 now has fully up to date statistics, as the High-Frequency Automatic Statistics Collection process looks for tables with stale statistics.

BOWIE3 now has histograms on the CODE columns, as the High-Frequency Automatic Statistics Collection process looks out for missing histograms if queries have been subsequently run with poor cardinality estimates.

Having more accurate, appropriate and up to date statistics all supports the CBO in making much better decisions in relation to the use of any newly created Automatic Indexes.

 

You can configure High-Frequency Automatic Statistics Collection in the following manner:

SQL> EXEC DBMS_STATS.SET_GLOBAL_PREFS('AUTO_TASK_STATUS','ON');

PL/SQL procedure successfully completed.

This turns the feature ON/OFF. It’s OFF by default on standard Exadata environments but ON by default in Autonomous Database environment.

 

SQL> EXEC DBMS_STATS.SET_GLOBAL_PREFS('AUTO_TASK_MAX_RUN_TIME','900');

PL/SQL procedure successfully completed.

This configures how long to allow the process to run (default is 3600 seconds/60 minutes).

 

SQL> EXEC DBMS_STATS.SET_GLOBAL_PREFS('AUTO_TASK_INTERVAL','900');

PL/SQL procedure successfully completed.

This configures the interval between the process running (default is every 900 seconds/15 minutes).

 

In my next post, I’ll look at a slightly more complex data skew example with Automatic Indexing, where both selective and unselective SQL predicates are invoked…

Oracle 19c Automatic Indexing: Poor Data Clustering With Autonomous Databases Part III (Star) August 11, 2020

Posted by Richard Foote in 19c, 19c New Features, Attribute Clustering, Automatic Indexing, Autonomous Data Warehouse, Autonomous Database, Autonomous Transaction Processing, CBO, Clustering Factor, Data Clustering, Exadata, Index Access Path, Index Internals, Index statistics, Oracle, Oracle Cost Based Optimizer, Oracle Indexes, Performance Tuning.
1 comment so far

In Part I we looked at a scenario where an index was deemed to be too inefficient for Automatic Indexing to create a VALID index, because of the poor clustering of data within the table.

In Part II we improved the data clustering but the previous SQLs could still not generate a new Automatic Index because they had effectively been blacklisted.

So how do we get Automatic Indexing to improve the performance of these queries?

Basically, we need to run some new SQL statements to those previously run which have not been blacklisted, that can make the Automatic Indexing process kick in and create the necessary indexes.

For example, if we now run the following SQL statements that have not previously run:

select * from nickcave where code=1;

select * from nickcave where code=2;

select * from nickcave where code=3;

 

And now wait for the next Automatic Indexing process period and look at the following (partial) Automatic Indexing report:

 

REPORT

--------------------------------------------------------------------------------
GENERAL INFORMATION
-------------------------------------------------------------------------------
Activity start               : 22-JUN-2020 04:26:31
Activity end                 : 22-JUN-2020 04:27:25
Executions completed         : 1
Executions interrupted       : 0
Executions with fatal error  : 0

-------------------------------------------------------------------------------
SUMMARY (AUTO INDEXES)
-------------------------------------------------------------------------------

Index candidates                              : 0
Indexes created (visible / invisible)         : 1 (1 / 0)
Space used (visible / invisible)              : 167.77 MB (167.77 MB / 0 B)
Indexes dropped                               : 0
SQL statements verified                       : 3
SQL statements improved (improvement factor)  : 3 (76x)
SQL plan baselines created                    : 0
Overall improvement factor                    : 76x


INDEX DETAILS
-------------------------------------------------------------------------------
The following indexes were created:
------------------------------------------------------------------------
| Owner | Table    | Index                | Key  | Type   | Properties |
------------------------------------------------------------------------
| BOWIE | NICKCAVE | SYS_AI_dh8pumfww3f4r | CODE | B-TREE | NONE       |
------------------------------------------------------------------------

VERIFICATION DETAILS
-------------------------------------------------------------------------------
The performance of the following statements improved:
-------------------------------------------------------------------------------

Parsing Schema Name  : BOWIE
SQL ID               : 5k1wmtu7um5q9
SQL Text             : select * from nickcave where code=1
Improvement Factor   : 76x

Execution Statistics:
-----------------------------

                   Original Plan                   Auto Index Plan
                   ----------------------------  ----------------------------
Elapsed Time (s):  1725103                       106145
CPU Time (s):      1534305                       62314
Buffer Gets:       291835                        779
Optimizer Cost:    9125                          792
Disk Reads:        0                             197
Direct Writes:     0                             0
Rows Processed:    500000                        100000
Executions:        5                             1

 

We can see that an index has indeed now been created on the CODE column because one of the new statements is now deemed to be 76x more efficient thanks to the new index.

If we look at details of this new Automatic Index:

 

SQL> select index_name, auto, constraint_index, visibility, compression, status, num_rows, leaf_blocks, clustering_factor
from user_indexes where table_name='NICKCAVE';

INDEX_NAME           AUT CON VISIBILIT COMPRESSION   STATUS     NUM_ROWS LEAF_BLOCKS CLUSTERING_FACTOR
-------------------- --- --- --------- ------------- -------- ---------- ----------- -----------------
SYS_AI_dh8pumfww3f4r YES NO  VISIBLE   DISABLED      VALID      10000000       19518             57983

SQL> select index_name, column_name, column_position from user_ind_columns
where table_name='NICKCAVE'
order by index_name, column_position;

INDEX_NAME           COLUMN_NAME          COLUMN_POSITION
-------------------- -------------------- ---------------
SYS_AI_dh8pumfww3f4r CODE                               1

 

We can see that the index is now indeed VALID and VISIBLE with a much improved Clustering Factor at just 57983.

If we now re-run newer SQL statement:

 

SQL> select * from nickcave where code=1;

100000 rows selected.

Execution Plan
--------------------------------------------------------------------------------------------------------------
| Id  | Operation                              | Name                | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                      |                      |  100K | 3613K |  792   (2) | 00:00:01 |
|   1 |  PX COORDINATOR                       |                      |       |       |            |          |
|   2 |   PX SEND QC (RANDOM)                 | :TQ10001             |  100K | 3613K |  792   (2) | 00:00:01 |
|   3 |    TABLE ACCESS BY INDEX ROWID BATCHED| NICKCAVE             |  100K | 3613K |  792   (2) | 00:00:01 |
|   4 |     BUFFER SORT                       |                      |       |       |            |          |
|   5 |      PX RECEIVE                       |                      |  100K |       |  205   (4) | 00:00:01 |
|   6 |       PX SEND HASH (BLOCK ADDRESS)    | :TQ10000             |  100K |       |  205   (4) | 00:00:01 |
|   7 |        PX SELECTOR                    |                      |       |       |            |          |
|*  8 |           INDEX RANGE SCAN            | SYS_AI_dh8pumfww3f4r |  100K |       |  205   (4) | 00:00:01 |
--------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   8 - access("CODE"=1)

Statistics
----------------------------------------------------------
          12  recursive calls
           0  db block gets
         779  consistent gets
           0  physical reads
         176  redo size
     2363897  bytes sent via SQL*Net to client
       73914  bytes received via SQL*Net from client
        6668  SQL*Net roundtrips to/from client
           2  sorts (memory)
           0  sorts (disk)
      100000  rows processed

 

We notice the SQL statement is now indeed using this new Automatic Index.

If we now re-run our original SQL statement that had been using a FTS execution plan and that we couldn’t make Automatic Indexing create a VALID index because when originally run, the data clustering was too poor within the table:

SQL> select * from nickcave where code=42;

100000 rows selected.

Execution Plan
--------------------------------------------------------------------------------------------------------------
| Id  | Operation                              | Name                | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                      |                      |  100K | 3613K |  792   (2) | 00:00:01 |
|   1 |  PX COORDINATOR                       |                      |       |       |            |          |
|   2 |   PX SEND QC (RANDOM)                 | :TQ10001             |  100K | 3613K |  792   (2) | 00:00:01 |
|   3 |    TABLE ACCESS BY INDEX ROWID BATCHED| NICKCAVE             |  100K | 3613K |  792   (2) | 00:00:01 |
|   4 |     BUFFER SORT                       |                      |       |       |            |          |
|   5 |      PX RECEIVE                       |                      |  100K |       |  205   (4) | 00:00:01 |
|   6 |       PX SEND HASH (BLOCK ADDRESS)    | :TQ10000             |  100K |       |  205   (4) | 00:00:01 |
|   7 |        PX SELECTOR                    |                      |       |       |            |          |
|*  8 |         INDEX RANGE SCAN              | SYS_AI_dh8pumfww3f4r |  100K |       |  205   (4) | 00:00:01 |
--------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

    8 - access("CODE"=42)

Statistics
----------------------------------------------------------
          14  recursive calls
           4  db block gets
         780  consistent gets
         198  physical reads
       15224  redo size
     2363897  bytes sent via SQL*Net to client
       73914  bytes received via SQL*Net from client
        6668  SQL*Net roundtrips to/from client
           2  sorts (memory)
           0  sorts (disk)
      100000  rows processed

 

This query is now also finally using the newly created index, because the CBO now too deems it to be more efficient with an index based execution plan.

The moral of the story. Automatic Indexing may initially deem a potential index to not be efficient enough to be created. However, things may change such as the clustering of table data (or the distribution of data values, etc. etc.) that may make a new index now viable. This though requires a NEW SQL statement to be executed, such that a non-blacklisted SQL can invoke the Automatic Indexing process to create the necessary Automatic Index.

Of course, things may change in the future. Future releases may have the facility to automatically re-cluster the data in tables optimally based on existing workloads and may also have a mechanism to identify that things have sufficient “changed” such that previously “failed” SQL statements from an Automatic Indexing perspective may warrant reevaluation.

This has only been tested up to version Oracle Database 19.5 of the Oracle Autonomous Database environments.

FIRST_ROWS_10 CBO Is Hopeless, It’s Using The Wrong Index !! (Weeping Wall) November 5, 2018

Posted by Richard Foote in ALL_ROWS, CBO, Exadata, FIRST_ROWS_10, Oracle Indexes, Siebel.
6 comments

low

There’s an organisation I had been dealing with on and off over the years who were having all sorts of issues with their Siebel System and who were totally convinced their performance issues were due directly to being forced to use the FIRST_ROWS_10 optimizer. I’ve attempted on a number of occasions to explain that their issues are not actually due to some unexplained deficiency with the FIRST_ROWS_10 CBO, but due to a number of other root issues, sadly to no avail. I recently found out they’re still struggling with performance issues, so I thought it might be worth looking at a classic example of where it looks simplistically like a FIRST_ROWS_10 CBO issue, but the “real” underlying problem(s) are actually quite different. Just in case other sites are likewise struggling to identify such SQL performance issues when using FIRST_ROWS_10…

This is a somewhat simplified version of their most common issue. Firstly, I create a table with 3M rows that has two columns of interest. The CODE column is initially populated with two evenly distributed distinct values and the GRADE column which only has the one distinct value.

SQL> create table bowie (id number not null, code number not null, grade number not null, name varchar2(42));

Table created.

SQL> insert into bowie select rownum, mod(rownum,2), 42, 'David Bowie'
from dual connect by level > = 3000000;

3000000 rows created.

SQL> commit;

Commit complete.

I then update a few rows (just 5) so that the CODE column now has a few occurrences of a third distinct value and update 5 other rows so the GRADE column has a few occurrences of a second distinct value:

SQL> update bowie set code=2
where id in (42, 4343, 400042, 1420001, 2000042);

5 rows updated.

SQL> commit;

Commit complete.

SQL> update bowie set grade=2
where id in (4212, 434323, 440423, 1440002, 2400642);

5 rows updated.

SQL> commit;

Commit complete.

We now introduce “a root problem”, not collecting histograms on these two columns, such that the CBO doesn’t recognise that the values in these columns are not evenly distributed. The CBO will incorrectly assume the rare CODE values actually occur 1M times as it will assume even distribution across the three distinct values. Now this is NOT the specific root issue at this organisation as they do gather histograms, but they do have numerous issues with the CBO not picking the correct cardinality/selectivity of their SQL.

SQL> exec dbms_stats.gather_table_stats(ownname=>null, tabname=>'BOWIE', estimate_percent=>100, method_opt=>'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

We next create indexes on these two CODE and GRADE columns:

SQL> create index bowie_code_i on bowie(code);

Index created.

SQL> create index bowie_grade_i on bowie(grade);

Index created.

Let’s now run the following query using the session default FIRST_ROWS_10 optimizer. The query basically returns just the 5 rows that have a CODE = 2, but sorts the result set by the GRADE column:

SQL> alter session set optimizer_mode=first_rows_10;

Session altered.

SQL> select * from bowie where code=2 order by grade;

Execution Plan
----------------------------------------------------------
Plan hash value: 3133133456

---------------------------------------------------------------------------------------------
| Id | Operation                   | Name          | Rows  | Bytes | Cost (%CPU) | Time     |
---------------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT            |               |    10 |   240 |       4 (0) | 00:00:01 |
|* 1 | TABLE ACCESS BY INDEX ROWID | BOWIE         | 1000K |   22M |       4 (0) | 00:00:01 |
|  2 | INDEX FULL SCAN             | BOWIE_GRADE_I |    31 |       |       3 (0) | 00:00:01 |
---------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - filter("CODE"=2)

Statistics
----------------------------------------------------------
    1 recursive calls
    0 db block gets
17518 consistent gets
 5865 physical reads
    0 redo size
  858 bytes sent via SQL*Net to client
  572 bytes received via SQL*Net from client
    2 SQL*Net roundtrips to/from client
    0 sorts (memory)
    0 sorts (disk)
    5 rows processed

The FIRST_ROWS_10 optimizer has come up with a terrible execution plan. Instead of using the index on the CODE column to quickly access the 5 rows of interest and then sort them, it uses an INDEX FULL SCAN via the GRADE column index.

This results in a massively inefficient execution plan (note 17,518 consistent gets), as the CBO has to basically read the entire table via this GRADE index to eventually find the 5 rows of interest that have a CODE=2.

The FIRST_ROWS_10 certainly appears to be dreadful…

But before you go off and demand that Oracle not use this CBO, the key question to ask here is WHY? Why is the FIRST_ROWS_10 CBO deciding to use what is clearly the wrong index?

If we can understand why this is happening, perhaps we can then address what is clearly a problem with an appropriate solution that might not just fix this query but many many like this. And perhaps we can address this problem with an optimal solution and not with a band-aid fix or with a sub-optimal solution that is beneficial for just this one query.

Now there are actually two clues within this execution plan regarding what is really going on.

The first is that the execution plan is estimating that 1000K rows are to be processed by the table access after the filter on CODE=2 has been applied. But this is not correct, there are only 5 such rows.

The second clue that not all is right is that the CBO is estimating 10 rows are to be retrieved via this FIRST_ROWS_10 access plan (as Oracle is trying here to come up with the best plan to retrieve the first 10 rows as efficiently as possible), however there are only 5 rows that meet this SQL criteria. The CBO is not picking up that less than the 10 mandatory rows will actually be fetched and only need to be considered

I always recommend a couple of things to look at if one ever comes across the scenario where the FIRST_ROWS(N) optimizer doesn’t appear to be behaving itself. The first is to look at a 10053 trace and see what the CBO costings are for the various alternative plans. The second is to simply run the query with the ALL_ROWS CBO to see what it’s initial deliberations might be, noting that the CBO has to perform an initial pass with ALL_ROWS to see the data density of the various steps to accurately come up with the optimal FIRST_ROWS(N) costings. Without knowing the potential full result set, The FIRST_ROWS_10 optimizer wouldn’t be able to determine for example how much of a Full Index Scan actually needs to be processed before it likely finds the necessary rows of interest.

So let’s see what costings and plan we get with the ALL_ROWS CBO:

SQL> alter session set optimizer_mode=all_rows;

Session altered.

SQL> select * from bowie where code=2 order by grade;

Execution Plan
----------------------------------------------------------
Plan hash value: 2027917145

------------------------------------------------------------------------------------
| Id | Operation         | Name  | Rows  | Bytes |TempSpc | Cost (%CPU) | Time     |
------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT  |       | 1000K |   22M |        |   11173 (8) | 00:00:01 |
|  1 | SORT ORDER BY     |       | 1000K |   22M |    34M |   11173 (8) | 00:00:01 |
|* 2 | TABLE ACCESS FULL | BOWIE | 1000K |   22M |        |   3387 (11) | 00:00:01 |
------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

2 - filter("CODE"=2)

Statistics
----------------------------------------------------------
    0 recursive calls
    0 db block gets
11897 consistent gets
    0 physical reads
    0 redo size
  858 bytes sent via SQL*Net to client
  572 bytes received via SQL*Net from client
    2 SQL*Net roundtrips to/from client
    1 sorts (memory)
    0 sorts (disk)
    5 rows processed

The root issue now becomes somewhat obvious…

ALL_ROWS is not correctly estimating 5 rows are to be returned, but 1000K rows !! Oracle is not estimating that using the index on the CODE column will only fetch 5 rows, but using such an index would retrieve 1000K rows. Using such a CODE index to access 1M rows would therefore be viewed as being much too expensive.

Importantly, the sort step would therefore not sort 5 rows, but would be required to sort 1000K rows, which would be extremely expensive.

Oracle thinks all this when deciding the best way to access the first 10 rows of interest as efficiently as possible with the FIRST_ROWS_10 CBO.

Rather than using the CODE index to first retrieve all 1000K rows, to then sort all 1000K rows before finally being able to return the first 10 rows of interest, Oracle instead does the following.

It uses the index of the GRADE column to retrieve the first 10 rows of interest. As 1 in 3 of all rows are estimated to be of interest (1M out of the 3M rows, because we’re interested in 1 of the 3 distinct CODE values), it estimates it doesn’t actually have to perform much of the FULL INDEX SCAN to find these initial 10 rows of interest.

As the GRADE index was accessed, it also means these first 10 rows would have been fetched in GRADE order. Therefore, there is no need to perform the SORT BY step as the index guarantees the data to be fetched in GRADE order. Not having to perform this sort makes this plan fantastically cheap compared to any other option that first requires all 1000K  of data to be fetched and sorted.

The execution plan when using ALL_ROWS is therefore deciding to perform a Full Table Scan (FTS) to access efficiently what the CBO thinks will be the 1000K rows of interest. This would be much more efficient than accessing all 1000K of interest via either the CODE index (followed by the sort) or via the GRADE index (in which the sort is not required) but requires all the table to be accessed by the index.

Now for this organisation, this FTS is not an entirely bad thing. Why? Because they run Siebel on an Exadata platform !!

Exadata takes this FTS and performs a Smart Scan. And the associated Storage Index can automatically determine this data is extremely rare and potentially only access the relatively few storage regions within the table where these few values of interest reside.

The query goes from taking 60 seconds to run using the “awful” FIRST_ROWS_10 CBO to just 2 seconds with the “brilliant” ALL_ROWS CBO.

However, the “root issue” here is not the FIRST_ROWS_10 CBO but the fact it is being fed insufficient statistics to make an accurate estimate of the true cost. As with all CBOs, rubbish stats in, rubbish plan out…

If we fix the actual root issue and provide the CBO with the necessary statistics to make the correct cardinality/selectivity estimates (in this example by collecting histograms on the skewed data columns):

SQL> exec dbms_stats.gather_table_stats(ownname=>null, tabname=>'BOWIE', estimate_percent=>100, method_opt=>'FOR ALL COLUMNS SIZE 75');

PL/SQL procedure successfully completed.

And now re-run the query again with ALL_ROWS:

SQL> alter session set optimizer_mode=all_rows;

Session altered.

SQL> select * from bowie where code=2 order by grade;

Execution Plan
----------------------------------------------------------
Plan hash value: 2357877461

-----------------------------------------------------------------------------------------------------
| Id | Operation                           | Name         | Rows | Bytes | Cost (%CPU) | Time     |
-----------------------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT                    |              |    5 |   120 |      5 (20) | 00:00:01 |
|  1 | SORT ORDER BY                       |              |    5 |   120 |      5 (20) | 00:00:01 |
|  2 | TABLE ACCESS BY INDEX ROWID BATCHED | BOWIE        |    5 |   120 |       4 (0) | 00:00:01 |
|* 3 | INDEX RANGE SCAN                    | BOWIE_CODE_I |    5 |       |       3 (0) | 00:00:01 |
-----------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

3 - access("CODE"=2)

Statistics
----------------------------------------------------------
  0 recursive calls
  0 db block gets
  8 consistent gets
  0 physical reads
  0 redo size
858 bytes sent via SQL*Net to client
572 bytes received via SQL*Net from client
  2 SQL*Net roundtrips to/from client
  1 sorts (memory)
  0 sorts (disk)
  5 rows processed

We notice that the ALL_ROWS CBO is now correctly determining the correct query cardinality (5 rows) and is now using the CODE index to retrieve the correctly estimated 5 rows. It’s happy to now perform the sort as the sort of 5 rows has a trivial cost (the cost just goes up by 1).

If we now run the query using the default session FIRST_ROWS_10 CBO:

SQL> alter session set optimizer_mode=first_rows_10;

Session altered.

SQL> select * from bowie where code=2 order by grade;

Execution Plan
----------------------------------------------------------
Plan hash value: 2357877461

-----------------------------------------------------------------------------------------------------
| Id | Operation                           | Name         | Rows | Bytes | Cost (%CPU) | Time     |
-----------------------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT                    |              |    5 |   120 |      5 (20) | 00:00:01 |
|  1 | SORT ORDER BY                       |              |    5 |   120 |      5 (20) | 00:00:01 |
|  2 | TABLE ACCESS BY INDEX ROWID BATCHED | BOWIE        |    5 |   120 |       4 (0) | 00:00:01 |
|* 3 | INDEX RANGE SCAN                    | BOWIE_CODE_I |    5 |       |       3 (0) | 00:00:01 |
-----------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

3 - access("CODE"=2)

Statistics
----------------------------------------------------------
  0 recursive calls
  0 db block gets
  8 consistent gets
  0 physical reads
  0 redo size
858 bytes sent via SQL*Net to client
572 bytes received via SQL*Net from client
  2 SQL*Net roundtrips to/from client
  1 sorts (memory)
  0 sorts (disk)
  5 rows processed

We note it’s also using the same execution plan as ALL_ROWS, as the FIRST_ROWS_10 CBO likewise is correctly determining that using the CODE index is now a very efficient manner in which to access just the 5 rows of interest.

Here’s the thing. If you are returning 10 or less rows, the optimal execution plan for both FIRST_ROWS_10 and ALL_ROWS should ultimately be the same, as they both should cost the associated plans the same way.

By correctly identifying and addressing the root issue here (poor cardinality/selectivity estimates), we get the following considerable benefits:

  • We now have an execution plan that doesn’t take 2 seconds to run, but 0.02 of a second (we are now down to just 8 consistent gets). This is much more efficient than the Exadata FTS and allows for the optimal plan to be selected, not just a better plan.
  • We automatically fix ALL execution plans for all queries that are based on this combination of table and filtering columns
  • We correctly understand and identify issues with any other table that likewise has the same costing issue
  • We don’t unnecessarily have to add ALL_ROWS hints or use ALL_ROWS based baselines to address all such related issues
  • We don’t implement a fix (such as baselines) that becomes ineffective if we were to even change the underlying SQL with any subsequent release
  • We don’t attempt to fix the relatively few problem queries with a global change (such as changing to ALL_ROWS CBO) that can potentially impact negatively as many queries as get addressed
  • We don’t spend years demanding futilely that Oracle Support allow Siebel with ALL_ROWS based session settings

So if you’re running Siebel and having performance issues, don’t just assume it’s some deficiency with the FIRST_ROWS_10 CBO, spend the time to get to the bottom of any root issues (e.g. CBO bugs with getting histograms costs incorrect for CHAR columns, missing statistics on small tables, poor default settings when returning empty result sets, Siebel bugs with Cartesian Joins, missing extended statistics, missing indexes, etc. etc.)…

In a future post, I’ll explain why playing around with the unsupported _sort_elimination_cost_ratio parameter (again, always a bad idea when trying to address specific SQL tuning issues) is ultimately futile when trying to get FIRST_ROWS_10 to not use the clearly inefficient index that eliminates the sort…

12.1.0.2 Introduction to Zone Maps Part II (Changes) October 30, 2014

Posted by Richard Foote in 12c, Exadata, Oracle Indexes, Zone Maps.
1 comment so far

In Part I, I discussed how Zone Maps are new index like structures, similar to Exadata Storage Indexes, that enables the “pruning” of disk blocks during accesses of the table by storing the min and max values of selected columns for each “zone” of a table. A Zone being a range of contiguous (8M) blocks.

I showed how a Zone Map was relatively tiny but very effective in reducing the number of consistent gets for a well clustered column (ALBUM_ID).

In this post, we’re going to continue with the demo and look at what happens when we update data in the table with a Zone Map in place.

So lets update the ALBUM_ID column (which currently has a Zone Map defined) for a few rows. The value of ALBUM_ID was previously 1 for all these rows (the full range of values is currently between 1 and 100) but we’re going to update them to 142:

SQL> update big_bowie set album_id=142 where id between 1 and 100;

100 rows updated.

SQL> commit;

Commit complete.

 

So the maximum value of ALBUM_ID is now 142, not 100. If we look at the maximum value as currently listed in the Zone Map:

 

SQL> select max(max_1_album_id) from  big_bowie_album_id_zm;

MAX(MAX_1_ALBUM_ID)
-------------------
100

 

We notice the maximum is still defined as being 100. So the update on the table has not actually updated the contents of the Zone Map. So this is a big difference between Zone Maps and conventional indexes, indexes are automatically updated during DML operations, Zone Maps are not (unless the REFRESH ON COMMIT option is specified).

If we look at the state of Zone Map entries that have a minimum of 1 (the previous values of ALBUM_ID before the update):

SQL> select * from big_bowie_album_id_zm where min_1_album_id = 1;

ZONE_ID$ MIN_1_ALBUM_ID MAX_1_ALBUM_ID ZONE_LEVEL$ ZONE_STATE$ ZONE_ROWS$
---------- -------------- -------------- ----------- ----------- ----------
3.8586E+11              1              2           0           0      66234
3.8586E+11              1              2           0           1      65787
3.8586E+11              1              2           0           0      66223

 

We notice that one of the entries has a status of 1, meaning that a specific zone has been marked as stale. However, all the other zones are still OK.

If we look at the status of the overall Zone Map:

SQL> select zonemap_name, pruning, refresh_mode, invalid, stale, unusable
from dba_zonemaps where zonemap_name='BIG_BOWIE_ALBUM_ID_ZM';

ZONEMAP_NAME              PRUNING  REFRESH_MODE      INVALID STALE   UNUSABLE
------------------------- -------- ----------------- ------- ------- --------
BIG_BOWIE_ALBUM_ID_ZM     ENABLED  LOAD DATAMOVEMENT NO      NO      NO

 

We notice that the Zone Map is still “hunky dory” after the update.

If we now re-run the query we ran in Part I:

 

SQL> select * from big_bowie where album_id = 42;

100000 rows selected.

Elapsed: 00:00:00.29

Execution Plan
----------------------------------------------------------
Plan hash value: 1980960934

----------------------------------------------------------------------------------------------------
| Id  | Operation                              | Name      | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                       |           |   100K|  8984K|  3269  (12)| 00:00:01 |
|*  1 |  TABLE ACCESS STORAGE FULL WITH ZONEMAP| BIG_BOWIE |   100K|  8984K|  3269  (12)| 00:00:01 |
----------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("ALBUM_ID"=42)
filter(SYS_ZMAP_FILTER('/* ZM_PRUNING */ SELECT "ZONE_ID$", CASE WHEN
BITAND(zm."ZONE_STATE$",1)=1 THEN 1 ELSE CASE WHEN (zm."MIN_1_ALBUM_ID" > :1 OR
zm."MAX_1_ALBUM_ID" < :2) THEN 3 ELSE 2 END END FROM "BOWIE"."BIG_BOWIE_ALBUM_ID_ZM" zm
WHERE zm."ZONE_LEVEL$"=0 ORDER BY zm."ZONE_ID$"',SYS_OP_ZONE_ID(ROWID),42,42)<3 AND "ALBUM_ID"=42)
Statistics
----------------------------------------------------------
141  recursive calls
0  db block gets
3238  consistent gets
0  physical reads
0  redo size
3130019  bytes sent via SQL*Net to client
761  bytes received via SQL*Net from client
21  SQL*Net roundtrips to/from client
0  sorts (memory)
0  sorts (disk)
100000  rows processed

 

We see the Zone Map was still used by the CBO. The number of consistent gets has increased (up from 2364 to 3238) as we now have to additional access all the blocks associated with this stale zone, but it’s still more efficient that reading all the blocks from the entire table.

If we want to remove the stale zone entries, we can refresh the Zone Map or rebuild it (for ON DEMAND refresh):

 

SQL> alter materialized zonemap big_bowie_album_id_zm rebuild;

Materialized zonemap altered.

 

If we now look at the Zone Map entry:

 

SQL> select * from big_bowie_album_id_zm where min_1_album_id = 1;

ZONE_ID$ MIN_1_ALBUM_ID MAX_1_ALBUM_ID ZONE_LEVEL$ ZONE_STATE$ ZONE_ROWS$
---------- -------------- -------------- ----------- ----------- ----------
3.8586E+11              1              2           0           0      66234
3.8586E+11              1            142           0           0      65787
3.8586E+11              1              2           0           0      66223

 

We see that the entry is no longer stale and now correctly reflects the actual maximum value within the zone (142).

If we now re-run the query:

SQL> select * from big_bowie where album_id = 42;

100000 rows selected.

Elapsed: 00:00:00.30

Execution Plan
----------------------------------------------------------
Plan hash value: 1980960934

----------------------------------------------------------------------------------------------------
| Id  | Operation                              | Name      | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                       |           |   100K|  8984K|  3269  (12)| 00:00:01 |
|*  1 |  TABLE ACCESS STORAGE FULL WITH ZONEMAP| BIG_BOWIE |   100K|  8984K|  3269  (12)| 00:00:01 |
----------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("ALBUM_ID"=42)
filter(SYS_ZMAP_FILTER('/* ZM_PRUNING */ SELECT "ZONE_ID$", CASE WHEN
BITAND(zm."ZONE_STATE$",1)=1 THEN 1 ELSE CASE WHEN (zm."MIN_1_ALBUM_ID" > :1 OR
zm."MAX_1_ALBUM_ID" < :2) THEN 3 ELSE 2 END END FROM "BOWIE"."BIG_BOWIE_ALBUM_ID_ZM" zm
WHERE zm."ZONE_LEVEL$"=0 ORDER BY zm."ZONE_ID$"',SYS_OP_ZONE_ID(ROWID),42,42)<3 AND "ALBUM_ID"=42)
Statistics
----------------------------------------------------------
141  recursive calls
0  db block gets
3238  consistent gets
0  physical reads
0  redo size
3130019  bytes sent via SQL*Net to client
761  bytes received via SQL*Net from client
21  SQL*Net roundtrips to/from client
0  sorts (memory)
0  sorts (disk)
100000  rows processed

 

We notice nothing has appreciably changed, the Zone Map is still being used but the number of consistent gets remains the same as before. Why haven’t we returned back to our previous 2364 consistent gets ?

Well, as the range of possible values within the updated zone is now between 1 and 142, the required value of 42 could potentially be found within this zone and so still needs to be accessed just in case. We know that the value of 42 doesn’t exist within this zone, but Oracle has no way of knowing this based on the possible 1 to 142 range.

Hence Zone Maps work best when the data is well clustered and the Min/Max ranges of each zone can be used to limit which zones need to be accessed. If the data was not well clustered and the values within each zone mostly had ranges between the min and max values, then Oracle wouldn’t be able to effectively prune many/any zone and the Zone Map would be useless.

As we’ll see in Part III 🙂

Storage Indexes vs Database Indexes IV: 8 Column Limit (Eight Line Poem) May 1, 2013

Posted by Richard Foote in Exadata, Oracle Indexes, Smart Scans, Storage Indexes.
2 comments

As Exadata Storage Indexes (SI) are purely memory only structures located on the Exadata storage servers, care needs to be taken in how much memory they can potentially consume. As a result, there is a limit of 8 columns (or 8 SIs) that can be defined for a given 1M storage region at any point in time, even though SIs are much smaller structures than equivalent database indexes. As database indexes are physical constructs however, there’s no such limit on the number of indexes that can be defined for a table. This can become another key difference between SIs and database indexes.

The following table has more than 8 columns, each with differing numbers of distinct values or distributions of data:

SQL> create table radiohead (id number, col1 number, col2 number, col3 number, col4 number, col5 number, col6 number, col7 number, col8 number, col9 number, col10 number, col11 number, col12 number, some_text varchar2(50));
Table created.

SQL> insert into radiohead select rownum, mod(rownum,10), mod(rownum,100), mod(rownum,1000), mod(rownum,10000), mod (rownum,100000), mod(rownum,1000000), ceil(dbms_random.value(0,10)), ceil(dbms_random.value(0,100)), ceil
 (dbms_random.value(0,1000)), ceil(dbms_random.value(0,10000)), ceil(dbms_random.value(0,100000)), ceil(dbms_random.value (0,1000000)), 'OK COMPUTER' from dual connect by level <=2000000; 2000000 rows created. SQL> commit;

Commit complete.

SQL> insert/*+ append */ into radiohead select * from radiohead;

2000000 rows created.

SQL> commit;

Commit complete.

SQL> insert/*+ append */ into radiohead select * from radiohead;

4000000 rows created.

SQL> commit;

Commit complete.

SQL> insert/*+ append */ into radiohead select * from radiohead;

8000000 rows created.

SQL> commit;

Commit complete.

SQL> exec dbms_stats.gather_table_stats(ownname=>user, tabname=>'RADIOHEAD', estimate_percent=>null, method_opt=> 'FOR ALL COLUMNS SIZE 1');

Let’s start by running a highly selective query of the ID column:

SQL> select * from radiohead where id = 42;
8 rows selected.

Elapsed: 00:00:00.05

Execution Plan
 ---------------------------------------------------------------------------------------
 | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
 ---------------------------------------------------------------------------------------
 | 0 | SELECT STATEMENT | | 8 | 416 | 42425 (1)| 00:08:30 |
 |* 1 | TABLE ACCESS STORAGE FULL| RADIOHEAD | 8 | 416 | 42425 (1)| 00:08:30 |
 ---------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
 ---------------------------------------------------

1 - storage("ID"=121212)
 filter("ID"=121212)

If we look at the session statistics, we’ll notice that a SI has been created and saved us physical IOs. Note: If you follow the demo, you’ll need to keep track of these statistics after each query or simply reconnect as a new session to ensure a SI has or has not been used.

SQL> select name , value/1024/1024 MB from v$statname n, v$mystat s where n.statistic# = s.statistic# and n.name in ('cell physical IO interconnect bytes returned by smart scan', 'cell physical IO bytes saved by storage index');

NAME MB
 ---------------------------------------------------------------- ----------
 cell physical IO bytes saved by storage index 1333.99219
 cell physical IO interconnect bytes returned by smart scan .164878845

OK, let’s now run a selective query on the COL1 column (there are no values 42 in this case and so no rows are returned):

SQL> select * from radiohead where col1=42;
no rows selected

Elapsed: 00:00:00.01

Execution Plan
 ---------------------------------------------------------------------------------------
 | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
 ---------------------------------------------------------------------------------------
 | 0 | SELECT STATEMENT | | 1 | 52 | 42440 (1)| 00:08:30 |
 |* 1 | TABLE ACCESS STORAGE FULL| RADIOHEAD | 1 | 52 | 42440 (1)| 00:08:30 |
 ---------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
 ---------------------------------------------------

1 - storage("COL1"=42)
 filter("COL1"=42)

SQL> select name , value/1024/1024 MB from v$statname n, v$mystat s where n.statistic# = s.statistic# and n.name in
 ('cell physical IO interconnect bytes returned by smart scan', 'cell physical IO bytes saved by storage index');

NAME MB
 ---------------------------------------------------------------- ----------
 cell physical IO bytes saved by storage index 2546.90625
 cell physical IO interconnect bytes returned by smart scan .341438293

Again, a SI has been created and used here. The SI in this case has been extremely beneficial because no data exists for 42 (only the values 1 – 10 exist). However, if an existing value were to be selected, the SI would be next to useless as such a value would exist throughout all 1M storage regions. With just 10 distinct randomly distributed values, this SI has the potential to be a waste of time. But while we search for values that don’t exist, it serves a very useful purpose. An important consideration in what’s to come.

If we now run a query now using column COL4:

SQL> select * from radiohead where col4=42;
1600 rows selected.

Elapsed: 00:00:00.68

Execution Plan
 ---------------------------------------------------------------------------------------
 | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
 ---------------------------------------------------------------------------------------
 | 0 | SELECT STATEMENT | | 1600 | 83200 | 42486 (1)| 00:08:30 |
 |* 1 | TABLE ACCESS STORAGE FULL| RADIOHEAD | 1600 | 83200 | 42486 (1)| 00:08:30 |
 ---------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
 ---------------------------------------------------

1 - storage("COL4"=42)
 filter("COL4"=42)

SQL> select name , value/1024/1024 MB from v$statname n, v$mystat s where n.statistic# = s.statistic# and n.name in
 ('cell physical IO interconnect bytes returned by smart scan', 'cell physical IO bytes saved by storage index');

NAME MB
 ---------------------------------------------------------------- ----------
 cell physical IO bytes saved by storage index 2612.64063 <= + 66MB
 cell physical IO interconnect bytes returned by smart scan 32.3048401

OK, this is the really important one to note. Firstly, yes again a SI has been created and used. Note though that this has not been the first SI to be created or used on this table; SIs have previously been created and used in the previous two queries on different columns. This will also not be the most recent SI to be created, more will soon follow. However, this is by far the least effective use of a SI, because of both the selectivity of the query and distribution of data. Here, only some 66MB or so of physical IOs have been saved.

We now repeat this process, running a query against a different column, being very selective and ensuring a SI is created and used. We finally reach a point when 8 SIs have been created on the table:

SQL> select * from radiohead where col9=0;
no rows selected

Elapsed: 00:00:00.02

Execution Plan
 ---------------------------------------------------------------------------------------
 | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
 ---------------------------------------------------------------------------------------
 | 0 | SELECT STATEMENT | | 15984 | 811K| 42561 (1)| 00:08:31 |
 |* 1 | TABLE ACCESS STORAGE FULL| RADIOHEAD | 15984 | 811K| 42561 (1)| 00:08:31 |
 ---------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
 ---------------------------------------------------

1 - storage("COL9"=0)
 filter("COL9"=0)

SQL> select name , value/1024/1024 MB from v$statname n, v$mystat s where n.statistic# = s.statistic# and n.name in
 ('cell physical IO interconnect bytes returned by smart scan', 'cell physical IO bytes saved by storage index');

NAME MB
 ---------------------------------------------------------------- ----------
 cell physical IO bytes saved by storage index 8792.94531
 cell physical IO interconnect bytes returned by smart scan 45.3872757

OK, we’ve now reached the point where  8 SIs have definitely been created on this table.

If we now run a query that could potentially use a SI but isn’t particularly effective, basically on a par to the one we saw created previously on COL4:

SQL> select * from radiohead where col10=42;
1536 rows selected.

Elapsed: 00:00:00.73

Execution Plan
----------------------------------------------------------
Plan hash value: 2516349655

---------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
---------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1600 | 83200 | 42577 (1)| 00:08:31 |
|* 1 | TABLE ACCESS STORAGE FULL| RADIOHEAD | 1600 | 83200 | 42577 (1)| 00:08:31 |
---------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("COL10"=42)
 filter("COL10"=42)

SQL> select name , value/1024/1024 MB from v$statname n, v$mystat s where n.statistic# = s.statistic# and n.name in ('cell physical IO interconnect bytes returned by smart scan', 'cell physical IO bytes saved by storage index');

NAME MB
---------------------------------------------------------------- ----------
cell physical IO bytes saved by storage index 8792.94531
cell physical IO interconnect bytes returned by smart scan 45.9288864

We notice that no bytes have been saved here via a SI. We can run this query repeatedly and the results will be the same. No SI is created and no bytes are saved. Although Oracle could potentially create a SI and save some work, the fact we already have 8 SIs created for this table means we have already reached the limit on the number of SIs that can be created for this table. 8 is it.

Let’s run another query now using yet another different column (COL12), but this time it’s again a very selective query, much more selective and efficient than the previous query based on COL4 in which a SI had been created:

SQL> select * from radiohead where col12=42;
8 rows selected.

Elapsed: 00:00:00.39

Execution Plan
 ---------------------------------------------------------------------------------------
 | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
 ---------------------------------------------------------------------------------------
 | 0 | SELECT STATEMENT | | 19 | 988 | 42607 (1)| 00:08:32 |
 |* 1 | TABLE ACCESS STORAGE FULL| RADIOHEAD | 19 | 988 | 42607 (1)| 00:08:32 |
 ---------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
 ---------------------------------------------------

1 - storage("COL12"=42)
 filter("COL12"=42)

SQL> select name , value/1024/1024 MB from v$statname n, v$mystat s where n.statistic# = s.statistic# and n.name in
 ('cell physical IO interconnect bytes returned by smart scan', 'cell physical IO bytes saved by storage index');

NAME MB
 ---------------------------------------------------------------- ----------
 cell physical IO bytes saved by storage index 9526.01563
 cell physical IO interconnect bytes returned by smart scan 53.5218124

This time however the number of bytes saved has again gone up from previously meaning that indeed a new SI has been created and used for column COL12. But this makes 9 SIs in total now for this table where the limit should be a maximum of 8 ?

Does this mean that a previously created SI has been dropped and replaced by this new one. If so, which SI is now gone ?

Well, let’s go back to the first SI we created and the one that hasn’t been used for the longest period of time. If we re-run the first query again:

SQL> select * from radiohead where id=42;
8 rows selected.

Elapsed: 00:00:00.05

Execution Plan
 ---------------------------------------------------------------------------------------
 | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
 ---------------------------------------------------------------------------------------
 | 0 | SELECT STATEMENT | | 8 | 416 | 42425 (1)| 00:08:30 |
 |* 1 | TABLE ACCESS STORAGE FULL| RADIOHEAD | 8 | 416 | 42425 (1)| 00:08:30 |
 ---------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
 ---------------------------------------------------

1 - storage("ID"=42)
 filter("ID"=42)

SQL> select name , value/1024/1024 MB from v$statname n, v$mystat s where n.statistic# = s.statistic# and n.name in
 ('cell physical IO interconnect bytes returned by smart scan', 'cell physical IO bytes saved by storage index');

NAME MB
 ---------------------------------------------------------------- ----------
 cell physical IO bytes saved by storage index 10726.9844
 cell physical IO interconnect bytes returned by smart scan 53.5264816

We notice that not only has it used a SI, but it has saved the maximum amount of IO bytes possible here meaning there was no “warming up” processes happening here indicating a newly created SI. So not only did it use a SI, it clearly used a previously created one. So this SI was not obviously impacted by the creation of this “9th” SI.

However, if we run the query again that used column COL4, the query that previously used a SI but was by far the least effective in saving physical IOs:

SQL> select * from radiohead where col4 = 4242;
1600 rows selected.

Elapsed: 00:00:00.73

Execution Plan
 ---------------------------------------------------------------------------------------
 | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
 ---------------------------------------------------------------------------------------
 | 0 | SELECT STATEMENT | | 1600 | 83200 | 42486 (1)| 00:08:30 |
 |* 1 | TABLE ACCESS STORAGE FULL| RADIOHEAD | 1600 | 83200 | 42486 (1)| 00:08:30 |
 ---------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
 ---------------------------------------------------

1 - storage("COL4"=4242)
 filter("COL4"=4242)

SQL> select name , value/1024/1024 MB from v$statname n, v$mystat s where n.statistic# = s.statistic# and n.name in
 ('cell physical IO interconnect bytes returned by smart scan', 'cell physical IO bytes saved by storage index');

NAME MB
 ---------------------------------------------------------------- ----------
 cell physical IO bytes saved by storage index 10726.9844 No Change !!
 cell physical IO interconnect bytes returned by smart scan 54.1522598

This time we notice there’s no change to the number of bytes saved by a SI. No matter how often we run this query now, no SI is used. So the SI that was created previously is now gone as a result of creating the more effective SI on the COL12 column. Indeed there are still just the 8 SIs on this table.

So Oracle will indeed limit the number of SIs to 8 for each table/storage region. However, it’s not simply a case of “first in first served” or some such, with Oracle using (undocumented) performance metrics to determine which 8 SIs/columns to choose. This means it might be possible in some rarer scenarios where more than 8 columns get referenced in SQL statements for SIs to come and go depending on changing workloads.  Another example of where database indexes may yet play a role in Exadata environments, where currently tables have more than 8+ indexed columns.