jump to navigation

Oracle 19c Automatic Indexing: CBO Incorrectly Using Auto Indexes Part II ( Sleepwalk) September 21, 2020

Posted by Richard Foote in 19c, 19c New Features, Automatic Indexing, Autonomous Data Warehouse, Autonomous Database, Autonomous Transaction Processing, CBO, Data Skew, Dynamic Sampling, Exadata, Explain Plan For Index, Extended Statistics, Hints, Histograms, Index Access Path, Index statistics, Oracle, Oracle Cloud, Oracle Cost Based Optimizer, Oracle Indexes, Oracle19c, Performance Tuning.
add a comment

As I discussed in Part I of this series, problems and inconsistencies can appear between what the Automatic Indexing processing thinks will happen with newly created Automatic Indexing and what actually happens in other database sessions. This is because the Automatic Indexing process session uses a much higher degree of Dynamic Sampling (Level=11) than other database sessions use by default (Level=2).

As we saw in Part I, an SQL statement may be deemed to NOT use an index in the Automatic Indexing deliberations, where it is actually used in normal database sessions (and perhaps incorrectly so). Where the data is heavily skewed and current statistics are insufficient for the CBO to accurately detect such “skewness” is one such scenario where we might encounter this issue.

One option to get around this is to hint any such queries with a Dynamic Sampling value that matches that of the Automatic Indexing process (or sufficient to determine more accurate cardinality estimates).

If we re-run the problematic query from Part I (where a new Automatic Index was inappropriately used by the CBO) with such a Dynamic Sampling hint:

SQL> select /*+ dynamic_sampling(11) */ * from iggy_pop where code1=42 and code2=42;

100000 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 3288467

--------------------------------------------------------------------------------------
| Id | Operation                | Name     | Rows | Bytes | Cost (%CPU)| Time        |
--------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT         |          |  100K|  2343K|    575 (15)| 00:00:01    |
|* 1 | TABLE ACCESS STORAGE FULL| IGGY_POP |  101K|  2388K|    575 (15)| 00:00:01    |
--------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("CODE1"=42 AND "CODE2"=42)
    filter("CODE1"=42 AND "CODE2"=42)

Note
-----
- dynamic statistics used: dynamic sampling (level=AUTO)
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
      40964 consistent gets
      40953 physical reads
          0 redo size
    1092240 bytes sent via SQL*Net to client
        609 bytes received via SQL*Net from client
         21 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
     100000 rows processed

We can see that the CBO this time correctly calculated the cardinality and hence correctly decided against the use of the Automatic Index.

Although these parameters can’t be changed in the Oracle Autonomous Database Cloud services, on the Exadata platform if using Automatic Indexing you might want to consider setting the OPTIMIZER_DYNAMIC_SAMPLING parameter to 11 (and/or OPTIMIZER_ADAPTIVE_STATISTICS=true)  in order to be consistent with the Automatic Indexing process. These settings can obviously add significant overhead during parsing and so need to be set with caution.

In this scenario where there is an inherent relationship between columns which the CBO is not detecting, the creation of Extended Statistics can be beneficial.

We currently have the following columns and statistics on the IGGY_POP table:

SQL> select column_name, num_distinct, density, num_buckets, histogram
from user_tab_cols where table_name='IGGY_POP';

COLUMN_NAME          NUM_DISTINCT    DENSITY NUM_BUCKETS HISTOGRAM
-------------------- ------------ ---------- ----------- ---------------
ID                        9705425          0         254 HYBRID
CODE1                         100  .00000005         100 FREQUENCY
CODE2                         100  .00000005         100 FREQUENCY
NAME                            1 5.0210E-08           1 FREQUENCY

 

If we now collect Extended Statistics on both CODE1, CODE2 columns:

SQL> exec dbms_stats.gather_table_stats(ownname=>null, tabname=>'IGGY_POP', method_opt=> 'FOR COLUMNS (CODE1,CODE2) SIZE 254');

PL/SQL procedure successfully completed.

SQL> select column_name, num_distinct, density, num_buckets, histogram from user_tab_cols where table_name='IGGY_POP';

COLUMN_NAME                    NUM_DISTINCT    DENSITY NUM_BUCKETS HISTOGRAM
------------------------------ ------------ ---------- ----------- ---------------
ID                                  9705425          0         254 HYBRID
CODE1                                   100  .00000005         100 FREQUENCY
CODE2                                   100  .00000005         100 FREQUENCY
NAME                                      1 5.0210E-08           1 FREQUENCY
SYS_STU#29QF8Y9BUDOW2HCDL47N44           99  .00000005         100 FREQUENCY

 

The CBO now has some idea on the cardinality if both columns are used within a predicate.

If we re-run the problematic query without the hint:

 

SQL> select * from iggy_pop where code1=42 and code2=42;

100000 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 3288467

--------------------------------------------------------------------------------------
| Id | Operation                | Name     | Rows | Bytes | Cost (%CPU)| Time        |
--------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT         |          |  100K|  2343K|    575 (15)| 00:00:01    |
|* 1 | TABLE ACCESS STORAGE FULL| IGGY_POP |  100K|  2343K|    575 (15)| 00:00:01    |
--------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("CODE1"=42 AND "CODE2"=42)
    filter("CODE1"=42 AND "CODE2"=42)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
      40964 consistent gets
      40953 physical reads
          0 redo size
    1092240 bytes sent via SQL*Net to client
        581 bytes received via SQL*Net from client
         21 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
     100000 rows processed

 

Again, the CBO is correctly the cardinality estimate of 100K rows and so is NOT using the Automatic Index.

However, we can still get ourselves in problems. If I now re-run the query that returns no rows and was previously correctly using the Automatic Index:

SQL> select code1, code2, name from iggy_pop where code1=1 and code2=42;

no rows selected

Execution Plan
----------------------------------------------------------
Plan hash value: 3288467

--------------------------------------------------------------------------------------
| Id | Operation                | Name     | Rows  | Bytes | Cost (%CPU)| Time       |
--------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT         |          | 50000 |  878K |   575 (15) | 00:00:01   |
|* 1 | TABLE ACCESS STORAGE FULL| IGGY_POP | 50000 |  878K |   575 (15) | 00:00:01   |
--------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("CODE1"=1 AND "CODE2"=42)
    filter("CODE1"=1 AND "CODE2"=42)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
      40964 consistent gets
      40953 physical reads
          0 redo size
        368 bytes sent via SQL*Net to client
        377 bytes received via SQL*Net from client
          1 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
          0 rows processed

We see that the CBO is now getting this execution plan wrong and is now estimating incorrectly that 50,000 rows are to be returned (and not the 1000 rows it estimated previously). This increased estimate is now deemed too expensive for the Automatic Index to retrieve and is now incorrectly using a FTS.

This because with a Frequency based histogram now in place, Oracle assumes that 50% of the lowest recorded frequency within the histogram is returned (100,000 x 0.5 = 50,000) if the values don’t exist but resided within the known min-max range of values.

So we need to be very careful HOW we potentially collect any additional statistics and its potential impact on other SQL statements.

 

As I’ll discuss next, another alternative to get more consistent behavior with Automatic Indexing in these types of scenarios is to make the Automatic Indexing processing session appear more like other database sessions…

Oracle 19c Automatic Indexing: CBO Incorrectly Using Auto Indexes Part I (Neighborhood Threat) September 18, 2020

Posted by Richard Foote in 19c, 19c New Features, Automatic Indexing, Autonomous Data Warehouse, Autonomous Database, Autonomous Transaction Processing, CBO, Data Skew, Explain Plan For Index, Extended Statistics, Full Table Scans, Histograms, Index Access Path, Oracle, Oracle General, Oracle Indexes.
1 comment so far

Following on from my previous few posts on “data skew”, I’m now going to look at it from a slightly different perspective, where there is an inherent relationship between columns. The CBO has difficulties in recognising (by default) that some combinations of column values are far more common than other combinations, resulting in incorrect cardinality estimates and resultant poor execution plans.

As we’ll see, this skew in returned data can lead to poor execution plans due to the inappropriate use of newly created Automatic Indexes…

I’ll start by creating a simple table that has two columns of interest, CODE1 and CODE2:

SQL> create table iggy_pop (id number, code1 number, code2 number, name varchar2(42));

Table created.

SQL> insert into iggy_pop select rownum, mod(rownum, 100)+1, mod(rownum, 100)+1, 'David Bowie'
from dual connect by level <= 10000000;

10000000 rows created.

SQL> commit;

Commit complete.

SQL> exec dbms_stats.gather_table_stats(ownname=>null, tabname=>'IGGY_POP');

PL/SQL procedure successfully completed.

 

Both columns CODE1 and CODE2 each have 100 distinct values, so that the possible combinations of data from both columns is 100 x 100 = 10,000. HOWEVER, the values of CODE1 and CODE2 are always the same and so there is in fact only 100 distinct combinations of data because of this inherent relationship between columns.

If we run the following query for a combination of data that exists:

 

SQL> select * from iggy_pop where code1=42 and code2=42;

100000 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 3288467

--------------------------------------------------------------------------------------
| Id | Operation                | Name      | Rows | Bytes | Cost (%CPU)|   Time     |
--------------------------------------------------------------------------------------
| 0  | SELECT STATEMENT         |          |   1000|  24000|    575 (15)|   00:00:01 |
|* 1 | TABLE ACCESS STORAGE FULL| IGGY_POP |   1000|  24000|    575 (15)|   00:00:01 |
--------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("CODE1"=42 AND "CODE2"=42)
    filter("CODE1"=42 AND "CODE2"=42)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
      40964 consistent gets
      40953 physical reads
          0 redo size
    1092240 bytes sent via SQL*Net to client
        581 bytes received via SQL*Net from client
         21 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
     100000 rows processed

 

Without an index, the CBO has no choice but to use a FTS. However, the interesting thing to note is how the cardinality estimate is way wrong, with 100,000 rows returned but only 1000 rows estimated. The CBO incorrect assumes that 1/10000th of the data is being returned and not actual the 1/100 (1%).

If we run a query on a combination of data that doesn’t exist:

SQL> select code1, code2, name from iggy_pop where code1=1 and code2=42;

no rows selected

Execution Plan
----------------------------------------------------------
Plan hash value: 3288467

--------------------------------------------------------------------------------------
| Id | Operation                | Name     | Rows | Bytes | Cost (%CPU)| Time        |
--------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT         |          | 1000 |  18000|    575 (15)| 00:00:01    |
|* 1 | TABLE ACCESS STORAGE FULL| IGGY_POP | 1000 |  18000|    575 (15)| 00:00:01    |
--------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - storage("CODE1"=1 AND "CODE2"=42)
    filter("CODE1"=1 AND "CODE2"=42)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
      40964 consistent gets
      40953 physical reads
          0 redo size
        368 bytes sent via SQL*Net to client
        377 bytes received via SQL*Net from client
          1 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
          0 rows processed

 

The CBO still estimates that 1000 rows are to be returned. However, with no rows returned, an index would be a much better alternative than the current FTS in this case.

Let’s now wait and see what the Automatic Indexing process makes of all this (following are highlights from the Auto Indexing Last Activity report):

 

SQL> select dbms_auto_index.report_last_activity() report from dual;

REPORT
--------------------------------------------------------------------------------
GENERAL INFORMATION
-------------------------------------------------------------------------------
Activity start              : 18-SEP-2020 01:24:17
Activity end                : 18-SEP-2020 01:25:29
Executions completed        : 1
Executions interrupted      : 0
Executions with fatal error : 0
-------------------------------------------------------------------------------

SUMMARY (AUTO INDEXES)
-------------------------------------------------------------------------------
Index candidates                             : 0
Indexes created (visible / invisible)        : 1 (1 / 0)
Space used (visible / invisible)             : 134.22 MB (134.22 MB / 0 B)
Indexes dropped                              : 0
SQL statements verified                      : 1
SQL statements improved (improvement factor) : 1 (41301.7x)
SQL plan baselines created                   : 0
Overall improvement factor                   : 41301.7x
-------------------------------------------------------------------------------

SUMMARY (MANUAL INDEXES)
-------------------------------------------------------------------------------
Unused indexes   : 0
Space used       : 0 B
Unusable indexes : 0
-------------------------------------------------------------------------------

INDEX DETAILS
-------------------------------------------------------------------------------
The following indexes were created:
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
| Owner | Table    | Index                | Key         | Type   | Properties |
-------------------------------------------------------------------------------
| BOWIE | IGGY_POP | SYS_AI_1awkddqkwa4f8 | CODE1,CODE2 | B-TREE | NONE       |
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------

 

So Oracle does indeed create an automatic index on the CODE1, CODE2 columns. However, notice that only 1 statement has been verified and not the above two statements that I had executed during the previous period.

 

VERIFICATION DETAILS
-------------------------------------------------------------------------------
The performance of the following statements improved:
-------------------------------------------------------------------------------
Parsing Schema Name : BOWIE
SQL ID              : bdnf0barn3jk7
SQL Text            : select code1, code2, name from iggy_pop where code1=1 and code2=42
Improvement Factor  : 41301.7x

Execution Statistics:
-----------------------------
                  Original Plan                 Auto Index Plan
                  ---------------------------- ----------------------------
Elapsed Time (s): 72085                        1342
CPU Time (s):     39272                        679
Buffer Gets:      123907                       3
Optimizer Cost:   575                          4
Disk Reads:       122859                       2
Direct Writes:    0                            0
Rows Processed:   0                            0
Executions:       3                            1

 

So only the SQL that returned 0 rows has been reported. As expected, it runs much more efficiently with an index than via the previous FTS, with an Improvement Factor of some 41301.7x.

 

PLANS SECTION
---------------------------------------------------------------------------------------------

- Original
-----------------------------
Plan Hash Value : 3288467

--------------------------------------------------------------------------------
| Id | Operation                | Name     | Rows | Bytes | Cost | Time        |
--------------------------------------------------------------------------------
| 0 | SELECT STATEMENT          |          |      |       |  575 |             |
| 1 | TABLE ACCESS STORAGE FULL | IGGY_POP | 1000 | 18000 |  575 | 00:00:01    |
--------------------------------------------------------------------------------

Notes
-----
- dop = 1
- px_in_memory_imc = no
- px_in_memory = no

- With Auto Indexes
-----------------------------
Plan Hash Value : 2496796491

-------------------------------------------------------------------------------------------------------
| Id  | Operation                           | Name                 | Rows | Bytes | Cost | Time       |
-------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                    |                      |    2 |    36 |    4 | 00:00:01   |
|   1 | TABLE ACCESS BY INDEX ROWID BATCHED | IGGY_POP             |    2 |    36 |    4 | 00:00:01   |
| * 2 | INDEX RANGE SCAN                    | SYS_AI_1awkddqkwa4f8 |    1 |       |    3 | 00:00:01   |
-------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
------------------------------------------
* 2 - access("CODE1"=1 AND "CODE2"=42)

Notes
-----
- Dynamic sampling used for this statement ( level = 11 )

 

If we look at the comparison between plans, the new plan of course uses the newly created Automatic Index.

The critical point to notice here however is that the cardinality estimates are almost spot for the new execution plan (2 rows is much closer to reality than the previous 1000).

The reason why it’s much more accurate is because the Auto Indexing process session uses the new Dynamic Sampling Level = 11. This enables the CBO to sample data on the fly and determine a much more accurate cardinality estimate than by default where the Dynamic Sampling Level=2.

This also explains why the other statement which returned many rows was not “verified”. Actually, it was but because the Auto Index process with Dynamic Sampling set to 11 correctly identified that too many rows were being returned to make any new index viable, this statement did NOT cause the new index to be kept.

So it was only the SQL that returned no rows that resulted in the newly created Automatic Index. The other statement was correctly determined by the Automatic Indexing process to run worse with the new index and so determined that the CBO would simply ignore the index if created.

BUT this assumption of the CBO ignoring the index is NOT correct as we’ll see…

If we look at the new Automatic Index:

SQL> select index_name, auto, constraint_index, visibility, compression, status, num_rows, leaf_blocks, clustering_factor from user_indexes where table_name='IGGY_POP';

INDEX_NAME                     AUT CON VISIBILIT COMPRESSION   STATUS     NUM_ROWS LEAF_BLOCKS CLUSTERING_FACTOR
------------------------------ --- --- --------- ------------- -------- ---------- ----------- -----------------
SYS_AI_1awkddqkwa4f8           YES NO  VISIBLE   ADVANCED LOW  VALID      10000000       15362           4083700

 

We can see the index is both VISIBLE and VALID and so can potentially be used now by ANY subsequent SQL statement.

Now the important thing to note is that the default for most sessions in a database is for Dynamic Sampling to be set to 2 and for Optimizer_Adaptive_Statistics=False. Importantly, this is also the case in Oracle’s Autonomous Transaction Processing Cloud service.

SQL> show parameter sampling

NAME                                 TYPE        VALUE
------------------------------------ ----------- ------------------------------
optimizer_dynamic_sampling           integer     2
SQL> show parameter optimizer_adaptive

NAME                                 TYPE        VALUE
------------------------------------ ----------- ------------------------------
optimizer_adaptive_plans             boolean     TRUE
optimizer_adaptive_reporting_only    boolean     FALSE
optimizer_adaptive_statistics        boolean     FALSE

 

So this is DIFFERENT to the settings for the Automatic Indexing process. In a standard session, the CBO will NOT have the capability to accurately determine the correct cardinality estimates as we saw previously.

If we now re-run the SQL that returns no rows:

SQL> select code1, code2, name from iggy_pop where code1=1 and code2=42;

no rows selected

Execution Plan
----------------------------------------------------------
Plan hash value: 2496796491

------------------------------------------------------------------------------------------------------------
| Id | Operation                          | Name                 | Rows | Bytes | Cost (%CPU)| Time        |
------------------------------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT                   |                      | 1000 | 18000 |     413 (0)| 00:00:01    |
|  1 | TABLE ACCESS BY INDEX ROWID BATCHED| IGGY_POP             | 1000 | 18000 |     413 (0)| 00:00:01    |
|* 2 | INDEX RANGE SCAN                   | SYS_AI_1awkddqkwa4f8 | 1000 |       |       4 (0)| 00:00:01    |
------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

2 - access("CODE1"=1 AND "CODE2"=42)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
          0 recursive calls
          0 db block gets
          3 consistent gets
          0 physical reads
          0 redo size
        368 bytes sent via SQL*Net to client
        377 bytes received via SQL*Net from client
          1 SQL*Net roundtrips to/from client
          0 sorts (memory)
          0 sorts (disk)
          0 rows processed

 

The execution uses the new index, because even though it STILL thinks 1000 rows are to be returned, that’s sufficiently few for the index to be costed the cheaper option.

When when re-run the SQL that returns many many rows:

 

SQL> select * from iggy_pop where code1=42 and code2=42;

100000 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 2496796491

------------------------------------------------------------------------------------------------------------
| Id | Operation                          | Name                 | Rows | Bytes | Cost (%CPU)| Time        |
------------------------------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT                   |                      | 1000 | 24000 |     413 (0)| 00:00:01    |
|  1 | TABLE ACCESS BY INDEX ROWID BATCHED| IGGY_POP             | 1000 | 24000 |     413 (0)| 00:00:01    |
|* 2 | INDEX RANGE SCAN                   | SYS_AI_1awkddqkwa4f8 | 1000 |       |       4 (0)| 00:00:01    |
------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

2 - access("CODE1"=42 AND "CODE2"=42)

Note
-----
- automatic DOP: Computed Degree of Parallelism is 1

Statistics
----------------------------------------------------------
         25 recursive calls
          0 db block gets
      41981 consistent gets
      40953 physical reads
          0 redo size
    1092240 bytes sent via SQL*Net to client
        581 bytes received via SQL*Net from client
         21 SQL*Net roundtrips to/from client
          1 sorts (memory)
          0 sorts (disk)
     100000 rows processed

 

Ouch. It also uses the new Automatic Index, because it also STILL thinks only 1000 rows are to be returned and just like the previous SQL statement, is determined to be the cheaper option.

BUT in this case it isn’t really the cheaper option, having to read the table potentially piecemeal at a time via the index, rather than more efficiently with fewer and larger multiblock reads via a FTS.

This is not really how Automatic is designed to work. Its meant to protect us from making SQL statements regress in performance BUT because there is a difference in how a normal session and the Automatic Indexing process determines the cost of execution plans, these scenarios can eventuate.

In my next blog I’ll look at how to address this specific scenario and then look at an example of how Automatic Indexing is really meant to work via the use of automated baselines…

Index Monitoring and Index Statistics (The Great Gig In The Sky) September 16, 2008

Posted by Richard Foote in 11g, Concatenated Indexes, Extended Statistics, Index Monitoring, Index statistics, Oracle Cost Based Optimizer, Oracle Indexes.
8 comments

I write this post whilst listening to Pink Floyd’s masterpiece “The Dark Side Of The Moon” while sadly lamenting the passing away of Richard Wright. RIP and thank you for all the great musical gifts you’ve given me over the years.

In my last post I highlighted an example of where Index Monitoring doesn’t show how indeed Oracle does indeed use an index when checking for the existence of Foreign Key values. Thought I might discuss yet another example of where Oracle does indeed use an index but it’s again not picked up by index monitoring, this time with a slight 11g flavour.

This specific example involves using the statistics associated with the indexes to provide the CBO with useful additional information, although the index itself is not used directly within the execution plan. Dropping the index means losing this information which could possibly result in a different, non optimal execution plans.

Prior to 11g, Oracle can have a hard time of accurately determining the correct selectively where there is a correlation between two (or more) columns in a table. By default, Oracle assumes the selectivity of two distinct columns to be the density of both columns multiplied together. So for example, if one column (say “A”) had 10 distinct values and the other column (say “B” also had 10 distinct values, Oracle assumes the selectivity of both columns combined to be 10 x 10 = 100 distinct values. A predicate such as:

WHERE A = 5 and B = 2

would assume 1% of data would be retrieved if both columns A and B both had 10 distinct possible values.

However, what if there’s a special relationship between the columns and the actual number of distinct combinations was somewhat different ? What if B always equals 2 when A equals 5, what if instead of the theoretical 100 different combinations there were only 10 combinations (or some such) because most of the other possible combination don’t actually exist …

This 9i and 10g demo shows how there is indeed only 10 distinct values for each of two different columns, however there is a direct relationship between these columns such that there is actually only 10 distinct combinations of both these columns (and not the 100 combinations which are possible and which Oracle assumes in it’s selectivity calculations).

Instead of the actual 10,000 rows (or 10% of all data) being selected, Oracle is incorrectly assuming only 1000 rows (or 1%) will be selected. This is a significant error by a order of magnitude which in many cases can result in a less efficient execution plan.

With 11g, Oracle can use the statistics associated with an index to give Oracle some vital extra information. Because if there’s an index based on the two columns, then the number of distinct key values recorded for the index can provide Oracle with a much more accurate estimation of the true selectivity based on the two columns. If a concatenated index based on the two columns only has say 10 distinct values, then Oracle can assume that a specific combination of the two columns is likely to also retrieve 1/10 of all the values and not the 1/100 that are theoretically possible.

This identical 11g demo to the one above shows by having an index on the two columns that have a correlation, Oracle is using the DISTINCT_KEYS statistic for the index to determine the correct selectivity and associated cardinality for the query.

However, the demo clearly shows index monitoring is still not showing the index as being “USED”. If you were to hence drop the index, the CBO loses potentially vital information and the cardinality estimates revert back to being the product of the two column densities as with pre 11g.

By dropping the index which appears to not be used, we can potentially impact other execution plans, even though they don’t directly use the index within the execution plan. The correct cardinality estimates of a table can for example potential drive the order in which the table is subsequently joined or the manner in which it’s joined.

This demo on the possible impact of dropping an “unused” index shows how an execution plan can change to be sub-optimal, even though neither execution actually directly uses the associated index. It’s not a particularly “clever” example, but it does illustrate the potential impact of dropping these so called unused indexes.

Of course, with 11g, we now have the capability of collecting extended statistics. We can potentially determine these same level of statistics by generating statistics on both columns combined. Oracle can determine the actual distinct combinations of columns that are somehow correlated and produce more accurate and detailed statistics with hence make the CBO determine more accurate and reliable cardinality estimates.

This final demo on extended statistics shows how we can recreate the more efficient execution plan and provide the CBO with more detailed extended statistics so that it can accurately determine the correct cardinality estimates without the need to recreate the “unused” index.

Extended statistics can be extremely useful in determining correct cardinality values for column combinations that exist however it still falls somewhat short when it attempts to estimate the expected cardinality for combinations that don’t actually exist, even with histograms.

But that’s a tale for another day.

Now it’s time for “Wish You Were Here” …