jump to navigation

Why Is My Index Not Being Used Solution (Eclipse) October 1, 2011

Posted by Richard Foote in ASSM, CBO, Clustering Factor, Oracle Indexes, Quiz.

Well done to everyone that got the correct answer 🙂

Indeed, the subtle but significant difference between the two demos was that demo one created the table in a tablespace called USER_DATA with manual segment space management (with freelists/freelist groups set to 1), while demo two created the table in a tablespace called USER_DATA1 with automatic segment space management.

In the first demo, the 3 separate sessions all followed the same freelist and inserted their rows concurrently into the same table blocks, resulting in the table being effectively sorted in ID order.

If we look at the resultant Clustering Factor:

SQL> select num_rows, leaf_blocks, clustering_factor from dba_indexes where index_name = 'BOWIE_ID_I';
---------- ----------- -----------------
    300000        1452              2171

We notice the Clustering Factor of 2171 is relatively low for an index with 300000 rows, as indeed the order of the rows in the table almost exactly matches the order of the index entries.

In the second demo, ASSM ensures the 3 separate transactions don’t cause contention and insert their rows in a different set of blocks from each other. This is good in that contention is reduced but has the nasty side-effect on now having the resultant rows scattered randomly between different sets of 3 varying blocks. The actual Clustering Factor isn’t particularly bad in that Oracle has to now visit 3 different blocks for a range of values that previously might have been co-located within the 1 block, but because of the manner of which the Clustering Factor is calculated and that it will increase even if forced to visit a block it had just visited a couple of I/O calls beforehand, the calculated Clustering Factor can be appalling.

If we look at the Clustering Factor of the index from the second demo:

SQL> select num_rows, leaf_blocks, clustering_factor from dba_indexes where index_name = 'BOWIE_ID_I';
---------- ----------- -----------------
    300000        1573            271936

We notice the Clustering Factor is now terrible at 271936. It’s a classic example of a table with the data that is relatively well clustered but has an appalling Clustering Factor. If Oracle didn’t increment the Clustering Factor for a block it had only visited a couple of index entries previously, then it would likely have a similar Clustering Factor to the first demo.

But statistics collection doesn’t take this into consideration, it will increment the Clustering Factor even if the block had only just recently been visited (only if it’s the same table block as the previous index entry will the Clustering Factor not increment during stats collection), so hence the terrible Clustering Factor and hence the dramatic difference in how the index is now considered, costed and used by the CBO.

The moral of this story is that if you use ASSM or you use mutliple Freelists/Freelist Groups to avoid contention, seriously consider the impact of the Clustering Factor on indexed columns that would ordinarily have a good Clustering Factor and the impact this in turn may have on your resultant execution plans …


1. David Aldridge - October 3, 2011

I suppose that in a situation like this it would be worth thinking about which columns might be prone to unhelpful/misleading clustering factors, and “correcting” them. It’s not hard to imagine writing a query that would calculate a pseudo-clustering factor based on the likelihood of a range scan revisiting a recently accessed block.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: