-- We will use 2 locally managed tablespaces, both with automatic segment space management but one with a uniform extent size and one with system generated extent sizes SQL> select tablespace_name, extent_management, allocation_type, segment_space_management from dba_tablespaces where tablespace_name in ('USERS', 'USERS3'); TABLESPACE_NAME EXTENT_MAN ALLOCATIO SEGMEN USERS LOCAL SYSTEM AUTO USERS3 LOCAL UNIFORM AUTO -- Create one index in a tablespace with uniform extent sizes SQL> create table shrink_index tablespace users3 as select rownum i from dual connect by level <=1000000; Table created. SQL> create index shrink_index_idx on shrink_index(i) tablespace users3; Index created. -- Create one index in a tablespace with system generated extent sizes SQL> create table shrink_index2 tablespace users as select rownum i from dual connect by level <=1000000; Table created. SQL> create index shrink_index2_idx on shrink_index2(i) tablespace users; -- Note both indexes have the same data and the same number of index leaf blocks SQL> select index_name, leaf_blocks from user_indexes where index_name like 'SHRINK_INDEX%'; | INDEX_NAME | LEAF_BLOCKS | |-------------------|-------------| | | | | SHRINK_INDEX2_IDX | 2226 | | SHRINK_INDEX_IDX | 2226 | -- However, both indexes have different number of extents SQL> select segment_name, bytes, blocks, extents from user_segments where segment_name like 'SHRINK_INDEX%' and segment_type = 'INDEX'; | SEGMENT_NAME | BYTES | BLOCKS | EXTENTS | |-------------------|----------|--------|---------| | | | | | | SHRINK_INDEX2_IDX | 18874368 | 2304 | 33 | | SHRINK INDEX IDX | 18874368 | 2304 | 18 | -- The index with Uniform extent sizes has 18 extents, all with the 1M uniform size (block size is 8K) SQL> select segment_name, extent_id, blocks from dba_extents where segment_name='SHRINK_INDEX_IDX' order by extent_id; | SEGMENT_NAME | EXTENT_ID | BLOCKS | |------------------|-----------|--------| | SHRINK INDEX IDX | 0 | 128 | | SHRINK_INDEX_IDX | ĺ | 128 | | SHRINK_INDEX_IDX | 2 | 128 | | SHRINK_INDEX_IDX | 3 | 128 | | SHRINK_INDEX_IDX | 4 | 128 | | SHRINK_INDEX_IDX | 5 | 128 | | SHRINK_INDEX_IDX | 6 | 128 | | SHRINK_INDEX_IDX | 7 | 128 | | SHRINK_INDEX_IDX | 8 | 128 | | SHRINK_INDEX_IDX | 9 | 128 | | SHRINK_INDEX_IDX | 10 | 128 | | SHRINK_INDEX_IDX | 11 | 128 | | SHRINK_INDEX_IDX | 12 | 128 | | SHRINK_INDEX_IDX | 13 | 128 | | SHRINK_INDEX_IDX | 14 | 128 | | SHRINK_INDEX_IDX | 15 | 128 | | SHRINK_INDEX_IDX | 16 | | | SHRINK_INDEX_IDX | 17 | 128 | 18 rows selected. -- However, the index with the system generated extents has 33 extents, 16 of them 64K each and 17 with 1M extent sizes SQL> select segment_name, extent_id, blocks from dba_extents where segment_name= 'SHRINK_INDEX2_IDX' order by extent_id; | SEGMENT_NAME | EXTENT_ID | BLOCKS | |---|--|---| | SHRINK_INDEX2_IDX | 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | 8
8
8
8
8
8
8
8
8
8
8
128
128
128
128
12 | | SHRINK_INDEX2_IDX | 32 | 128 | 33 rows selected. -- Now let's shrink both indexes and see what happens ... SQL> alter index shrink_index_idx shrink space; Index altered. SQL> alter index shrink_index2_idx shrink space; Index altered. -- Note both indexes still have 2226 leaf blocks each. Being just created indexes, the shrink command has made no difference to the index structure of either index \dots SQL> select index_name, leaf_blocks from user_indexes where index_name like 'SHR INK_INDEX%'; | INDEX_NAME | LEAF_BLOCKS | |-------------------|-------------| | | | | SHRINK_INDEX2_IDX | 2226 | | SHRINK_INDEX_IDX | 2226 | -- Note that both indexes also have the same number of extents as expected, as again the indexes have just been created and been allocated the necessary extents -- BUT the bytes and the blocks of the index in the ASSM tablespace has reduced whereas the bytes and the blocks of the index in the Uniform tablespace remains unchanged \dots SQL> select segment_name, bytes, blocks, extents from user_segments where segment_name like 'SHRINK_INDEX%' and segment_type = 'INDEX'; | SEGMENT_NAME | BYTES | BLOCKS | EXTENTS | |---------------------------------------|----------------------|--------------|----------| | | | | | | SHRINK_INDEX2_IDX
SHRINK INDEX IDX | 18677760
18874368 | 2280
2304 | 33
18 | $\mbox{--}$ Note that the index with the uniform extent sizes still has all 18 extents fixed at the uniform size. SQL> select segment_name, extent_id, blocks from dba_extents where segment_name= 'SHRINK_INDEX_IDX' order by extent_id; | SEGMENT_NAME | EXTENT_ID | BLOCKS | |------------------|-------------|--------| | SHRINK_INDEX_IDX | 0 | 128 | | SHRINK_INDEX_IDX | 1 | 128 | | SHRINK_INDEX_IDX | 2 | 128 | | SHRINK_INDEX_IDX | 3 | 128 | | SHRINK_INDEX_IDX | 4
5
6 | 128 | | SHRINK_INDEX_IDX | 5 | 128 | | SHRINK_INDEX_IDX | | 128 | | SHRINK_INDEX_IDX | 7 | 128 | | SHRINK_INDEX_IDX | 8 | 128 | | SHRINK_INDEX_IDX | 9 | 128 | | SHRINK_INDEX_IDX | 10 | | | SHRINK_INDEX_IDX | 11 | 128 | | SHRINK_INDEX_IDX | 12 | 128 | | SHRINK_INDEX_IDX | 13 | | | SHRINK_INDEX_IDX | 14 | 128 | | SHRINK_INDEX_IDX | 15 | 128 | | SHRINK_INDEX_IDX | 16 | | | SHRINK_INDEX_IDX | 17 | 128 | 18 rows selected. -- However note the index with the system generate extents sizes has changed. The shrink command has de-allocated, all the unused portion off the last extent and reduced the size of the last extent from 128 blocks down to 104 blocks. 33 rows selected. ⁻⁻ As the system generated extent tablespace doesn't insist on each extent being a specific size, the shrink command has had an effect, even if the segment has only just been created \dots