
Yet Another Presentation on
Extended SQL Trace

Richard Foote

Copyright: Richard Foote Consulting

Services
1

Objectives

• Outline why “conventional” performance diagnosis
techniques are flawed

• History of Wait Event Instrumentation

• Introduce the “Response Time” tuning methodology

• Describe how to enable extended SQL tracing

• Describe how to interpret a raw extended SQL trace

• 10g Wait Event new features

Copyright: Richard Foote Consulting

Services
2

Where‟s The Milk ?

• Asked my wife to pop down to the local shop to
buy some milk. A full 60 minutes later, she finally
returns and pops the milk on the kitchen bench.

• This “response time” is clearly unacceptable, I had
expected the milk in 5 minutes !!

• So how can I improve the response time ?

• What would be my first question … ?

Copyright: Richard Foote Consulting

Services
3

DBA Cry For HELP !!

Extract of a post on comp.database.oracle.server
newsgroup:

Copyright: Richard Foote Consulting

Services
4

“I have a problem with an Oracle 8.1.5 database in that recently
the database seems to be running very slowly. I have tried:

1) Rebuild indexes

2) Analyze NT performance

3) Checking fragmentation

I spent a couple of days on the net trying to find solutions but
have not had much success…”

Unfortunately, unless we know what Oracle is
doing and what it‟s spending its time on, any
diagnosis would be pure guesswork …

“Conventional” Tuning Methodology

Copyright: Richard Foote Consulting

Services
5

The “database” or “application” or “database users” are

experiencing performance problems. It‟s running

slooooooooowly.

Step 1: Take out long checklist of potential problems

Step 2: Start with item 1, see if it‟s the problem (typically

related to some ratio or another using statspack as source)

Step 3: Hope problem is solved after tinkering with item

Step 4: If not, move onto next item on the list

Step 5: Repeat process until problem is eventually solved,

just goes away or users stop complaining …

Problems with Conventional Tuning
Methods

• Is very much a hit ‘n’ miss affair

• Is often based on inappropriate “scoping” of diagnosis data

• Can take significant amount of wasted time/resources to
resolve

• Can lead to fixing “problems” that don’t actually directly
impact performance

• Can lead to confusion as to what eventually fixed problem

• Can lead to confusion as to what the problem was

• Can lead to confusion as to whether the problem has
actually been solved …

Copyright: Richard Foote Consulting

Services
6

Users are a funny bunch …

• They don’t care that the database appears to be running
well

• They don’t care your count(*) from dba_tables runs really
really fast

• They don’t care other users aren’t complaining

• They don’t care all hit rates and ratios are really really high

• They don’t care it’s a tricky one and that you’ve gone
through your checklist without luck

• They don’t care all is green on your Quest Spotlight screen

• When it comes to performance, they only care about …

Copyright: Richard Foote Consulting

Services
7

RESPONSE
TIMES !!

Copyright: Richard Foote Consulting

Services
8

Response Time

Copyright: Richard Foote Consulting

Services
9

Response times can simplistically be broken up into

two basic components:

Time it takes doing something

+
Time it takes waiting on something

Anjo Kolk and Co in their groundbreaking “Yet Another

Performance Profiling Method (YAPP)” paper denote

response time as:

Response Time = Service Time + Wait Time

Problem with standard tracing is that wait time is

unknown…

Birth of Extended SQL Trace

• In 1992 Oracle development lead by Juan Loaiza were
having problems solving a problem using “conventional”
methods

• Response times were bad but they had no idea where
Oracle was spending its time

• In desperation, they decided to embed wait
instrumentation into database code

• They could then clearly determine where time was being
spent and problem was immediately found

• Extended SQL tracing was born…

Copyright: Richard Foote Consulting

Services
10

Evolution Of Wait Event Interface

• V7:106 wait events

• V8:215 wait events

• V9:399 wait events

• V10:808 wait events

Note: Various enhancements in each release to be discussed…

Copyright: Richard Foote Consulting

Services
11

List of „Common‟ Events

db file sequential read control file sequential read
db file scattered read control file parallel write
db file parallel read cpu service
db file parallel write buffer busy waits
direct path read free buffer waits
direct path write enqueue
direct path read (lob) latch: library cache
direct path write (lob) latch: library cache pin
log file switch completion latch: redo allocation
log file sync latch: shared pool

………….

Copyright: Richard Foote Consulting

Services
12

Where to Find Wait Event Info

• numerous v$ views, eg:
– v$system_event (aggregates database stats)
– v$session_event (aggregates session stats)
– v$session_wait (current session waits)
– v$session_wait_history (last 10 wait

events/session)

• bstat/estat, Statspack, ADDM / AWR (10g) …
• But there’s a major drawback with many of the

above to diagnose specific tuning issues …

Copyright: Richard Foote Consulting

Services
13

Problem with “Generalised” Wait
Event Info

• Specific tuning problem can be “drowned” out by all
other activities

• Once data is aggregated, specific information is lost

• Averages can be very misleading (database/session)

• Database level statistics don’t necessarily translate to
a specific performance issue

• Fundamentally, aggregated statistics don’t disclose
where time is spent during specific tuning problems

Copyright: Richard Foote Consulting

Services
14

Scoping is Vital

• Firstly, we ideally want to focus and prioritize on
sessions/applications important to business

• Ideally we need to capture where time is spent just for
the session experiencing performance problems

• Ideally we need to capture where time is spent just for
the duration of the performance problem

• Any more and aggregation can be misleading and
introduce discrepancies

• Any less and vital data could be missing
• So how can we get just the right amount of data …

Copyright: Richard Foote Consulting

Services
15

EXTENDED
SQL TRACING !!

Copyright: Richard Foote Consulting

Services
16

Some Pre-Requisites First …

• timed_statistics = true

• max_dump_file_size=unlimited
obvious risk but else risk miss vital info …

• user_dump_dest=location of trace file (user)

• background_dump_dest=location of trace file
(background)

• set tracefile_identifier =‘trace_tag’

Copyright: Richard Foote Consulting

Services
17

How to enable Extended SQL Trace

Copyright: Richard Foote Consulting

Services
18

alter session set events „10046 trace name context forever,

level 12‟;

where level can have the following levels:

1 - standard sql trace (as per sql_trace and the such)

4 - include bind values in trace file

8 - include wait events in trace file

12 - include both bind and wait events in trace file

(recommended)

alter session set events „10046 trace name context off‟;

Trace Another Session

Copyright: Richard Foote Consulting

Services
19

To trace another session (from version 7):

dbms_system.set_env(sid, serial#, 10046, 12, „‟)

dbms_system.set_env(sid, serial#, 10046, 0, „‟)

Note: a little dangerous due to risk of entering incorrect

event …

Enabling Extended SQL Trace

Copyright: Richard Foote Consulting

Services
20

Version 8: dbmssupp.sql

dbms_support.start_trace(true, true)

dbms_support.stop_trace()

dbms_support.start_trace_in_session(sid, serial#, binds=> true, waits=>true)

dbms_support.stop_trace_in_session(sid, serial#)

Version 9i:

dbms_session.session_trace_enable(true,true,‟ALL_EXECUTIONS‟)

dbms_session.session_trace_disable()

Version 10g:

dbms_monitor.session_trace_enable(sid, serial#, waits=>true, binds=>true)

dbms_monitor.session_trace_disable(sid, serial#)

Raw Trace File: Preamble

Copyright: Richard Foote Consulting

Services
21

Dump file c:\oracle\admin\floyd\udump\floyd_ora_2788.trc

Fri Aug 06 19:07:32 2004

ORACLE V10.1.0.2.0 - Production vsnsta=0

vsnsql=13 vsnxtr=3

Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production

With the Partitioning, OLAP and Data Mining options

Windows XP Version V5.1 Service Pack 1

CPU : 1 - type 586

Process Affinity: 0x00000000

Memory (A/P) : PH:92M/510M, PG:743M/1249M, VA:1849M/2047M

Instance name: floyd

Redo thread mounted by this instance: 1

Oracle process number: 14

Windows thread id: 2788, image: ORACLE.EXE (SHAD)

Raw Trace File: Session Details

Copyright: Richard Foote Consulting

Services
22

*** ACTION NAME:() 2004-08-06 15:07:32.613

*** MODULE NAME:(SQL*Plus) 2004-08-06 15:07:32.613

*** SERVICE NAME:(SYS$USERS) 2004-08-06 15:07:32.613

*** SESSION ID:(150.35) 2004-08-06 15:07:32.613

Raw Trace File: Parsing in Cursor

Copyright: Richard Foote Consulting

Services
23

PARSING IN CURSOR #9 len=98 dep=0 uid=28 oct=3 lid=28 tim=8526767622

hv=404259818 ad='7afad994'

select count(*) from bowie , ziggy where bowie.table_name=ziggy.segment_name and

bowie.owner='SYS'

END OF STMT

len: length of sql text

dep: recursive depth of sql

uid: user id (who parsed sql)

oct: Oracle command type

lid: Privilege user id (eg. owner of calling procedure)

tim: Timestamp (timings in microsec 9i and above, previously centisec)

hv: Hash id

ad: SQLTEXT address (as in v$sql)

Raw Trace File: Database Calls

Copyright: Richard Foote Consulting

Services
24

PARSE #9:c=46875,e=490772,p=3,cr=102,cu=0,mis=1,r=0,dep=0,og=1,tim=8526767615

PARSE, EXEC, FETCH, UNMAP, SORT UNMAP, ERROR operations

#: cursor number

c: cpu time

e: elapsed time

p: physical read requests

cr: consistent reads

cu: current reads

mis: cursor misses in library cache

r: rows processed

dep: depth of cursor (0 = user level, >0 = recursive)

og: optimizer goal (1=all_rows, 2=first_rows, 3=rule, 4=choose)

tim: timestamp

Raw Trace File: Binds

Copyright: Richard Foote Consulting

Services
25

BINDS #9:

bind 0: dty=2 mxl=22(22) mal=00 scl=00 pre=00 oacflg=08 oacfl2=0001 size=24 offset=0

bfp=05536990 bln=22 avl=02 flg=05

value=42

bind n: bind position (note equates to :bn+1 in sql) size: memory size

dty: data type offset: offset into bind buffer

mxl: maximum length bfp: bind address

mal: array length bln: bind buffer length

scl: scale avl: actual length

pre: precision flag: bind status flag

oacflg: various bind option flags value: actual bind value

Raw Trace File: Wait Events

Copyright: Richard Foote Consulting

Services
26

WAIT #9: nam='SQL*Net message to client' ela= 6 p1=1111838976 p2=1 p3=0

WAIT #9: nam='db file scattered read' ela= 18816 p1=4 p2=1810 p3=8

WAIT #9: nam='db file sequential read' ela= 353 p1=4 p2=1821 p3=1

nam: name of wait event

ela: elapsed time of wait

p1: parameter 1 for specific wait event (eg. file# - db file scattered read)

p2: parameter 2 for specific wait event (eg. block# - db file scattered read)

p3: parameter 3 for specific wait event (eg. blocks – db file scattered read)

It’s this level of detail that describes the difference between CPU and

overall response times !!

Raw Trace File: Better Format

Copyright: Richard Foote Consulting

Services
27

WAIT #1: nam='db file sequential read' ela= 10584 file#=8 block#=1033 blocks=1

obj#=78294 tim=615409524250

WAIT #1: nam='db file scattered read' ela= 13980 file#=8 block#=1034 blocks=16

obj#=78294 tim=615409551520

WAIT #1: nam='db file scattered read' ela= 1487 file#=8 block#=1050 blocks=16

obj#=78294 tim=615409554677

nam: name of wait event ela: elapsed time of wait

file#: file number of data file accessed

block#: block id of first block accessed in I/O operation

blocks: number of blocks read by I/O operation

obj#: Database object id of database object being accessed

In later versions of Oracle, wait info is more detailed and easier to read

Raw Trace File: Row Source Operations

Copyright: Richard Foote Consulting

Services
28

STAT #9 id=1 cnt=1 pid=0 pos=1 obj=0 op='SORT AGGREGATE (cr=938 pr=108 pw=0

time=331605 us)'

STAT #9 id=2 cnt=328704 pid=1 pos=1 obj=0 op='HASH JOIN (cr=938 pr=108 pw=0

time=1790903 us)„

STAT #9 id=3 cnt=9728 pid=2 pos=1 obj=15054 op='TABLE ACCESS FULL BOWIE

(cr=562 pr=108 pw=0 time=34953 us)'

STAT #9 id=4 cnt=67472 pid=2 pos=2 obj=15057 op='INDEX FAST FULL SCAN

ZIGGY_IDX (cr=376 pr=0 pw=0 time=202491 us)„

id: row source id op:operation

cnt: no of rows returned cr: consistent reads

pid: parent id pr: physical reads

pos: position within same parent level pw: physical writes

obj: object id time: elapsed times

TKPROF and Extended Trace

• Since 9i, TKPROF can also format and
summarise wait details in trace file

• Bind data however is not displayed

• In many cases, can simplify and ease
interpretation of trace data

• But, can hide important details

• Can have issues with double counting

Copyright: Richard Foote Consulting

Services
29

TKPROF: Standard SQL Trace

Copyright: Richard Foote Consulting

Services
30

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.01 0.05 0 0 0 0

Execute 1 0.09 982.84 615 1714 22 48

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 2 0.10 982.89 615 1714 22 48

Rows Row Source Operation

------- ---

0 UPDATE (cr=1714 pr=615 pw=0 time=982840119 us)

48 TABLE ACCESS FULL BOWIE (cr=1713 pr=613 pw=0 time=2715035 us)

Classic example : why the massive difference between CPU time and
elapsed time ?

Let‟s check out Database Level
Statspack

Copyright: Richard Foote Consulting

Services
31

Top 5 Timed Events

~~~~~~~~~~~~~~~~~~                                               % Total

Event                                               Waits    Time (s) Ela Time

-------------------------------------------- ------------ ----------- ------------

db file sequential read                    943,457   18,678       46.33

db file scattered read                      381,532     6,059       15.03

CPU time                                                          5,627       13.96

direct path read (lob)                      326,048     5,550       13.77

SQL*Net more data to client           204,957     3,051        7.57

It certainly looks like we might have an I/O related problem here …



TKPROF: Extended SQL Trace

Copyright: Richard Foote Consulting 

Services
32

Elapsed times include waiting on following events:

Event waited on                             Times   Max. Wait  Total Waited

---------------------------------------- Waited       ---------- ------------

db file sequential read                        565            0.31               2.70

db file scattered read                            18            0.01               0.07

enq: TX - row lock contention          319            3.12           979.65

SQL*Net message to client                     1            0.00              0.00

SQL*Net message from client                 1            9.16              9.16

********************************************************************************

With extended SQL wait data, we‟re lead to the actual cause of the problem

Note also the max Times Waited is not always the actual problem …



Oracle Response Times

Copyright: Richard Foote Consulting 

Services
33

Millsap/Holt break response times with two 

different categories:

Time within database calls (i.e. database in 

the process of performing a task)

Time between database calls (i.e. database 

waiting to be asked to perform a task)



Time Within Database Calls

Copyright: Richard Foote Consulting 

Services
34

Elapsed time during a database call is approx:

e  = c (cpu time) + sum (ela within call)

Approx. due to unaccounted times and double-

counting

Note: waits times for a database call are all 

listed directly before the database call



Time Between Database Calls

Copyright: Richard Foote Consulting 

Services
35

• Can be simply expressed as:

Sum (ela) times between database calls

• Examples of between (idle) database calls:

 SQL*Net message to client

 SQL*Net message from client

 pmon timer

 smon timer …

• Do not ignore (as often stated) so-called “idle” database calls …



Putting Total Response Times Together

Copyright: Richard Foote Consulting 

Services
36

Total response time for a traced file is approx:

r=Time Within Calls + Time Between Calls

r=c (cpu) + sum (elapsed times within calls) + 

sum (elapsed times between calls)

r= c (cpu) + sum (ela)



Careful of double counting

• Recursive SQL is also listed in the trace file

• Identified with a dep > 0

• Child recursive calls are listed immediately before the 
parent (child dep – 1)

• e = e (dep 0) – e (dep > 0)

• CPU can also be double counted as some ela timings 
are inclusive of CPU (generally insignificant)

Copyright: Richard Foote Consulting 

Services
37



Tracing Parallel Execution

• Statements running in parallel spawn Px 
processes

• These processes generate their own individual 
trace files

• All related trace files need to be studied and 
considered

• Not too difficult to achieve

Copyright: Richard Foote Consulting 

Services
38



Tracing Multi-tier Environments

• Very difficult to consolidate trace data
• Client sessions can share and use multiple server 

sessions
• Session trace data can be spread across multiple 

trace files
• Multiple sessions can be intermixed into a single 

trace file
• Most solutions required altering temporarily how 

applications are invoked
• 10g has simplified things …

Copyright: Richard Foote Consulting 

Services
39



10g New Extended Trace Features

• Perhaps most important is that all is now fully 
supported and documented by Oracle

• dbms_monitor package
• No. of events increased from 399 to 800+
• Lots of new wait related v$views, including:

– v$session_wait_class
– v$session_wait_history
– v$sess_time_model
– v$service_event
– v$service_wait_class

Copyright: Richard Foote Consulting 

Services
40



10g Wait Events New Features
• Can now trace data based on new criteria:

– Client Identifier

– Service Name

– Module Name

– Action Name

• Developers Note !! End client identifying info can be set via:
– dbms_session 

– dbms_application_info

– JDBC/OCI call attributes

• Allows developers to label instrumentation parameters in 
applications

• Examples:
– exec dbms_session.set_identifier(‘Bowie’);

– OCIAttrSet (session, OCI_HTYPE_SESSION, (dviod *) “bowie”,

(ub4)strlen(“bowie”), OCI_ATTR_CLIENT_IDENTIFIER, error_handle);
Copyright: Richard Foote Consulting 

Services
41



Statistic Aggregation Dimensions
• Statistics can now be aggregated across these new 

dimensions

• dbms_monitor.client_id_stat_enable(‘bowie)

• dbms_monitor.serv_mod_act_stat_enable(‘service_name’
,’module_name’,’action_name’,waits, binds’)

• New views include:

– dba_enabled_aggregations

– v$client_stats

– v$service_stats

– v$serv_mod_act_stats

• However, remember problems with aggregating data …

Copyright: Richard Foote Consulting 

Services
42



End-To-End Tracing With 10g

• Extended tracing can also be globally enabled across new 
dimensions

• Simplifies tracing of specific issues in n-tier and shared 
server environments

• dbms_monitor.client_id_trace_enable(‘bowie’, 
waits=>true, binds=>true)

• dbms_monitor.serv_mod_act_trace_enable(‘service_nam
e’,’module_name’,’action_name’,waits, binds)

• New view: dba_enabled_traces

Note: OEM fully supports all new features discussed

Copyright: Richard Foote Consulting 

Services
43



TRCSESS Command

• Simplifies consolidation of trace data in n-tier 
and shared server environments

• Generates a single trace file by extracting 
required data from specified trace files

• trcsess output=output.trc client_id=‘bowie’ 
trace_file_1.trc trace_file_2.trc

Copyright: Richard Foote Consulting 

Services
44



Warnings Put In Perspective
• Pre-10g, extended SQL trace was not “officially” promoted by 

Oracle (despite numerous metalink articles)

• Careful what and how much you trace, can consume much disk

• Writing to disk can impact overall response time

• Version 9 collects stats at the rowsource level in plans, can 
impact CPU consumption

• Like any feature, can have bugs (eg. 3009359 which causes 
excessive cpu overheads in 9.2.0.4)

• However, consider “cost” of not correctly diagnosing 
performance issue …

Copyright: Richard Foote Consulting 

Services
45



Further Reading

• www.hotsos.com: numerous excellent articles 

• www.oraperf.com: YAPP and other articles

• Metalink has numerous notes:

– 21154.1 10046 enable SQL statement tracing

– 39817.1 Interpreting raw SQL trace output

– 62294.1 The DBMS_SUPPORT package

– 242374.1Tracing PX session with a 10046 event

Copyright: Richard Foote Consulting 

Services
46

http://www.hotsos.com/
http://www.oraperf.com/


A Must Read For Every Oracle DBA

• Cary Millsap and Jeff Holt – “Optimizing 
Oracle Performance”

• Excellent !!

Copyright: Richard Foote Consulting 

Services
47


