“* In this example, the ALBUM_ID in the BIG_DWH_TABLE_2 has a very bad Clustering Factor

SQL> SELECT index_name, Tleaf_blocks, clustering_factor FROM user_indexes WHERE index_name
Tike 'BIG_DWH%ALBUM_ID_I';

INDEX_NAME LEAF_BLOCKS CLUSTERING_FACTOR
BIG_DWH_2_ALBUM_ID_I 2090 989933
BIG_DWH_ALBUM_ID_I 2090 4948

SQL> SELECT * from big_dwh_table_2 WHERE album_id IS NOT NULL ORDER BY album_id;

1000000 rows selected.

Execution Plan

Plan hash value: 1154224976

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time

0	SELECT STATEMENT		1000k	28M		9300 (1)	00:01:52
1	SORT ORDER BY		1000k	28M	9IM	9300 (1)	00:01:52
* 2	TABLE ACCESS FULL	BIG_DWH_TABLE_2	1000k	28M		1112 (2)	00:00:14

*** with the bad CF, Ooracle picked the FTS when retrieving all rows from the table, where
previously with the BIG_DWH_TABLE example, it had used the index

SQL> SELECT * from big_dwh_table_2 WHERE album_id BETWEEN 1 AND 1000 ORDER BY album_id;

100000 rows selected.

Execution Plan

Plan hash value: 1154224976

| Id | Operation | Name | Rows | Bytes |TempsSpc| Cost (%CPU)| Time

0	SELECT STATEMENT		100K	2929K		1928 (2)] 00:00:24	
1	SORT ORDER BY		100K	2929K	9432k	1928 (2)]	00:00:24
* 2	TABLE ACCESS FULL	BIG_DWH_TABLE_2	100K	2929K		1108 (2)	00:00:14

%% Oracle still fancies the FTS, even when selecting just 10% of the rows with the poor CF

SQL> SELECT * from big_dwh_table_2 WHERE album_id BETWEEN 1 AND 100 ORDER BY album_id;

10000 rows selected.

Execution Plan

Plan hash value: 1154224976

Id	Operation	Name	Rows	Bytes	TempSpc	Cost (%CPU)	Time
0	SELECT STATEMENT		10001	292K		1192 (2)	00:00:15
1	SORT ORDER BY		10001	292K	952K	1192 (2)	00:00:15
* 2	TABLE ACCESS FULL	BIG_DWH_TABLE_2	10001	292K		1107 (2)	00:00:14

**% still fancies the FTS with just 1% of data ...

SQL> SELECT * from big_dwh_table_2 WHERE album_id BETWEEN 1 AND 15 ORDER BY album_id;

1500 rows selected.

Execution Plan

Plan hash value: 1154224976

Id	operation	Name	Rows	Bytes	Cost (%CPU)	Time
O	SELECT STATEMENT		1500	45000	1108 (2)	00:00:14
1	SORT ORDER BY		1500	45000	1108 (2	00:00:14
* 2	TABLE ACCESS FULL	BIG_DWH_TABLE_2	1500	45000	1107 (2)	00:00:14

* Still fancies the FTS with just 0.15% of data ...

SQL> SELECT * from big_dwh_table_2 WHERE album_id BETWEEN 1 AND 11 ORDER BY album_id;

1100 rows selected.

Execution Plan

Plan hash value: 1165252589

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
| 0 | SELECT STATEMENT | | 1100 | 33000 | 1096 (1)| 00:00:14]|
| 1 | TABLE ACCESS BY INDEX ROWID| BIG_DWH_TABLE_2 | 1100 | 33000 | 1096 (1)| 00:00:14]
|* 2| INDEX RANGE SCAN | BIG_DWH_2_ALBUM_ID_I | 1100 | | 5 (0)| 00:00:01]

**% It wasn’t until just 0.11% of data was retrieved that the CBO used the index to retrieve
the data and eliminate the sort operation

