“* First, setup a 16K tablespace
SQL> alter system set db_1l6k_cache_size = 80m;

System altered.

SQL> create tablespace ts_16k datafile 'c:\oracle\product\10.2.0\bowie\ts_16k01l.dbf' size
1024M uniform size 1M segment space management manual blocksize 16K;

Tablespace created.

**% Next create a simple little table that initially has 2M rows

SQL> CREATE TABLE bowie AS SELECT rownum id, sysdate-10000+mod(rownum,10000) date_field FROM
dual CONNECT BY LEVEL <=2000000;

Table created.
**% Create an index in the default 8K tablespace
SQL> CREATE INDEX bowie_i ON bowie(date_field);
Index created.

Feded

Now evenly delete 1/2 the rows to defragment the index

SQL> DELETE bowie WHERE mod(id,2)=1;

1000000 rows deleted.

SQL> COMMIT;

Commit complete.

*%% Ccollect current stats

SQL> exec dbms_stats.gather_table_stats(ownname=>'BOWIE', tabname=>'BOWIE',
estimate_percent=>null, method_opt=>'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

*%% Note the db_file_multiblock_read_count is set to 16

SQL> show parameter db_file_multiblock

NAME TYPE VALUE

db_file_multiblock_read_count integer 16

SQL> set autotrace traceonly

** Flush the buffer cache to make the database have to work hard for the required blocks

SQL> alter system flush buffer_cache;

System altered.

“* Trace the session, very important

SQL> alter session set events '10046 trace name context forever, level 12';

Session altered.

*%% Now run some SQL that performs a multiblock read of the bowie_i via an Index Fast Full
Scan (Note: run the query first before the buffer cache flush to reduce parsing related
overheads)

SQL> SELECT /*+ index_ffs (bowie, bowie_i) */ date_field FROM bowie where date_field > '01-
JAN-1978"';

1000000 rows selected.
Execution Plan

Plan hash value: 251320893

| Id | operation | Name | Rows | Bytes | Cost (%CPU)| Time
| 0 | SELECT STATEMENT | | 1000k| 7812k| 1173 (2)| 00:00:15 |

[* 1 | INDEX FAST FULL SCAN| BOWIE_I | 1000k| 7812k| 1173 (2)| 00:00:15 |

1 - filter("DATE_FIELD">TO_DATE('1978-01-01 00:00:00', 'yyyy-mm-dd
hh24:mi:ss'))
Statistics
0 recursive calls
0 db block gets
6320 consistent gets
5307 physical reads

0 redo size

5167309 bytes sent via SQL*Net to client
11385 bytes received via SQL*Net from client
1001 sqQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)

1000000 rows processed

“* Note that consistent reads is 6320

“* Turn tracing off

SQL> alter session set events '10046 trace name context off';

Session altered.

*%% Tf we Took at a tkprof report of the query ...

SELECT /*+ index_ffs (bowie, bowie_i) */ date_field FROM bowie where date_field > 'Ol1-JAN-
1978"

call count cpu elapsed disk query current rows
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1001 0.73 1.23 5307 6320 0 1000000
total 1003 0.73 1.23 5307 6320 0 1000000

**% we note that CPU is 0.73 seconds, elapsed is 1.23 seconds and query reads 1is 6320

WAIT #8: nam='db file scattered read' ela= 738 file#=5 block#=242233 blocks=16 obj#=59933
tim=341634522940

**% We note in the raw trace file that most scattered reads read 16 blocks at a time as
expected with a db_file_multiblock_read_count set to 16

dede

we want to try and improve this performance.

dede

I read somewhere that moving indexes into a bigger block tablespace should help, Tet's
give it a go ...

“* S0, let's rebuild the index in the 16K tablespace

SQL> alter index bowie_i rebuild tablespace ts_16k;

Index altered.

SQL> alter system flush buffer_cache;

System altered.

SQL> alter session set events '10046 trace name context forever, level 12';

Session altered.

*%% Let's see if the performance of the query has improved ? (Note: run the query first
before the buffer cache flush to reduce parsing related overheads)

SQL> SELECT /*+ index_ffs (bowie, bowie_i) */ date_field FROM bowie where date_field > '01-
JAN-1978"';

1000000 rows selected.

Execution Plan

Plan hash value: 251320893

| Id | operation | Name | Rows | Bytes | Cost (%CPU)| Time
| 0 | SELECT STATEMENT | | 1000k| 7812K]| 367 (4)| 00:00:05 |

[* 1 | INDEX FAST FULL SCAN| BOWIE_I | 1000K| 7812k| 367 (4)| 00:00:05 |

1 - filter("DATE_FIELD">TO_DATE('1978-01-01 00:00:00', 'yyyy-mm-dd
hh24:mi:ss'))
Statistics
1 recursive calls
0 db block gets
2317 consistent gets

1310 physical reads

0 redo size
5167309 bytes sent via SQL*Net to client
11385 bytes received via SQL*Net from client
1001 sqQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)

1000000 rows processed

** well, for a start, the consistent reads has dropped significantly from 6230 to just 2317

SQL> alter session set events '10046 trace name context off';

Session altered.

SELECT /*+ index_ffs (bowie, bowie_i) */ date_field FROM bowie where date_field > '0Ol-JAN-
1978"

call count cpu elapsed disk query current rows
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1001 0.79 1.08 1310 2317 0 1000000
total 1003 0.79 1.08 1310 2317 0 1000000
**% Fantastic !! Elapsed times has dropped from 1.23 down to just 1.08 (somewhat over 12%

improvement, not bad at all).

*%% We note that CPU has gone up a touch from 0.73 to 0.79, but what the hell, response times
have improved.

*** This is PROOF, beyond question that the 16K block size has improved performance, by a
significant 12% !!

**% Tsn't that right ??

WAIT #1: nam="db file scattered read' ela= 767 file#=7 block#=46 blocks=8 obj#=59933
tim=342035983379

*%% Note that scattered reads only read as a maximum 8 blocks (instead of 16 with the 8K
default) so the size of a multiblock read is the same as before.

*%% Although the rebuild in the 16K block tablespace has improved performance, I wonder what
the result would be if we simply rebuilt the index in the old 8K block tablespace

SQL> alter index bowie_i rebuild tablespace bowie;

Index altered.

SQL> set autotrace traceonly
SQL> alter system flush buffer_cache;

System altered.

SQL> alter session set events '10046 trace name context forever, level 12';

Session altered.

*%% (Note: run the query first before the buffer cache flush to reduce parsing related
overheads)

SQL> SELECT /*+ index_ffs (bowie, bowie_i) */ date_field FROM bowie where date_field > '01-
JAN-1978"';

1000000 rows selected.

Execution Plan

Plan hash value: 251320893

| Id | operation | Name | Rows | Bytes | Cost (%CPU)| Time
| 0 | SELECT STATEMENT | | 1000k| 7812K]| 594 (3)| 00:00:08 |

[* 1 | INDEX FAST FULL SCAN| BOWIE_I | 1000K| 7812k| 594 (3)| 00:00:08 |

1 - filter("DATE_FIELD">TO_DATE('1978-01-01 00:00:00', 'yyyy-mm-dd
hh24:mi:ss'))
Statistics
0 recursive calls
0 db block gets
3664 consistent gets

2655 physical reads

0 redo size
5167309 bytes sent via SQL*Net to client
11385 bytes received via SQL*Net from client
1001 sqQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)

1000000 rows processed

“* Note that the consistent reads although not as Tow as with the 16K block tablespace, is
much Tower that it was originally

SQL> alter session set events '10046 trace name context off';

Session altered.

SELECT /*+ index_ffs (bowie, bowie_i) */ date_field FROM bowie where date_field > 'Ol1-JAN-
1978"

call count cpu elapsed disk query current rows
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1001 0.65 0.99 2655 3664 0 1000000
total 1003 0.65 0.99 2655 3664 0 1000000

**% oh my goodness, isn't that interesting.

%% Note only is elapsed times better than it was originally, it's actually better than the
index in the 16K tablespace, just 0.99 compared to 1.08

*%% Note also that CPU 1is significantly less at just 0.65 compared to 0.79 in the 16K
tablespace

WAIT #1: nam="db file scattered read' ela= 668 file#=5 block#=222953 blocks=16 obj#=59933
tim=342792899797

*%% Scattered reads are now back to reading 16 blocks at a time.

*%% 50 it wasn't so much that the 16K tablespace made the index more efficient, but the fact
the index *rebuild* made the index more efficient ...

