“* First, create table. Note that the ID column is really really selective but the CODE
column has just the 5 distinct values

SQL> CREATE TABLE ziggy_stuff AS SELECT mod(rownum,500000) id, mod(rownum,5) code, 'ZIGGY'
name FROM dual CONNECT BY LEVEL <= 1000000;

Table created.

*** First create an index with the Teading column being the low cardinality, just 5 distinct
values CODE column, followed by the really selective ID column

*** This index combination is going to be really inefficient to use right ...

SQL> CREATE INDEX ziggy_stuff_i ON ziggy_stuff(code, id);

Index created.

SQL> exec dbms_stats.gather_table_stats(ownname=>null, tabname=>'ZIGGY_STUFF', cascade=>
true, estimate_percent=> null, method_opt=> 'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

Feded

Let's Took at just how good this index really is.

SQL> SELECT * FROM ziggy_stuff WHERE id = 4242 and code = 2;

Execution Plan

Plan hash value: 2876492483

| Id | operation | Name | Rows | Bytes | Cost (%CPU)| Time

| 0 | SELECT STATEMENT | | 1] 13 | 5 (0)| 00:00:01 |
| 1 | TABLE ACCESS BY INDEX ROWID| ZIGGY_STUFF | 1] 13 | 5 (0)| 00:00:01
[* 2 | INDEX RANGE SCAN | ZIGGY_STUFF_I | 2 | | 3 (0)]| 00:00:01

2 - access("CODE"=2 AND "ID"=4242)

Statistics
0 recursive calls
0 db block gets
6 consistent gets
0 physical reads
0 redo size
559 bytes sent via SQL*Net to client
396 bytes received via sQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
2 rows processed

#%% Actually that's not bad at all. A cost of just 5 and 6 CRs seems perfectly reasonable

**%* The BLEVEL of the index is 2 so that's 4 CRs to_get to down to the leaf block and read
the 2 index entries, 2 CRs for the visit to the table ...

**% How does Oracle get to the exact leaf block of interest, why doesn't it have to plough
through a whole bunch of CODEs with a value of 2 to get to the ID of interest ?

KR

well a block dump of a root branch block reveals the answer ...

Block header dump: 0x0480828a

Object id on Block? Y

seg/obj: 0x1418f csc: 0x0l.e2b2e033 ditc: 1 flg: - typ: 2 - INDEX
fs1: 0 fnx: Ox0 ver: Ox01

Itl Xid Uba Flag Lck scn/Fsc
0x01 Oxffff.000.00000000 0x00000000.0000.00 C--- 0 scn 0x0001.e2b2e033

Branch block dump

header address 4137540=0x3f2244
kdxcoTlev 2

KDXCOLEV Flags = - - -

kdxcolok 0

kdxcoopc 0x80: opcode=0: iot flags=--- is converted=Y
kdxconco 3

kdxcosdc 0

kdxconro 4

kdxcofbo 36=0x24

kdxcofeo 8008=0x1f48

kdxcoavs 7972

kdxbrimc 75531717=0x48085c5 ==> pointer (data block address) to the first
intermediate branch block

kdxbrsno 0

kdxbrbksz 8060

kdxbr2urrc 0

row#0[8047] dba: 75532512=0x48088e0 ==> pointer to the second intermediate branch block
col 0; len 2; (2): «cl 02 ==> first column (CODE) value by which to navigate
col 1; len 4; (4): 3 07 3f 39 ==> second column (ID) value by which to navigate.
Index entries less than these values go via the first branch block

col 2; TERM ==> third column (ROWID) is not required to identify
the necessary path and so the branch entry is terminated at this point

row#1[8034] dba: 75537018=0x4809a7a ==> pointer to the third intermediate branch block

(and so on)

col 0; len 2; (2): «cl1 03

col 1; Ten 4; (4): «c3 08 34 62

col 2; TERM

row#2[8021] dba: 75537812=0x4809d94
col 0; len 2; (2): cl1 04

col 1; len 4; (4): c3 09 20 5e

col 2; TERM

row#3[8008] dba: 75563461=0x48101c5
col 0; len 2; (2): «cl1 05

col 1; len 4; (4): c3 0a Oc 5a

col 2; TERM

————— end of branch block dump -----
End dump data blocks tsn: 21 file#: 18 minblk 33418 maxblk 33418

*%% 50 the branch nodes contain columns values of all the indexed columns required to
identify a unique path by which any index entry can be direct to the relevant leaf block

**%* That being the case, the order of the index columns on it's own should make little
difference to the performance of the index

Fede

Let's see if there indeed is any difference ...
SQL> drop index ziggy_stuff_i;

Index dropped.

KR

Now create the index with the columns the other way around
SQL> CREATE INDEX ziggy_stuff_i ON ziggy_stuff(id, code);

Index created.

*%% Same query ...

SQL> SELECT * FROM ziggy_stuff WHERE id = 4242 and code = 2;

Execution Plan

Plan hash value: 2876492483

1d	operation	Name	Rows	Bytes	Cost (%CPU)	Time
0	SELECT STATEMENT		1	13	5 (0)	00:00:01
1	TABLE ACCESS BY INDEX ROWID	ZIGGY_STUFF	1] 13	5 (0)	00:00:01	
[* 2 | INDEX RANGE SCAN | ZIGGY_STUFF_I | 2 | | 3 (0)] 00:00:01 |

2 - access("ID"=4242 AND "CODE"=2)

Statistics
0 recursive calls
0 db block gets
6 consistent gets
0 physical reads

0 redo size
559 bytes sent via SQL*Net to client
396 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
2 rows processed

** Identical index performance ...

*%% Block dump of branch (root) block ...

Block header dump: 0x0480828a

Object id on Block? Y

seg/obj: 0x14190 csc: Ox0l.e2b2elc7 itc: 1 flg: - typ: 2 - INDEX
fs1: 0 fnx: Ox0 ver: Ox01

Itl Xid Uba Flag Lck scn/Fsc
0x01 Oxffff.000.00000000 0x00000000.0000.00 C--- 0 scn 0x0001.e2b2elc?7

Branch block dump

header address 4137540=0x3f2244

kdxcolev 2

KDXCOLEV Flags = - - -

kdxcolok 0O

kdxcoopc 0x80: opcode=0: iot flags=--- is converted=Y

kdxconco 3

kdxcosdc 0

kdxconro 3

kdxcofbo 34=0x22

kdxcofeo 8030=0x1f5e

kdxcoavs 7996

kdxbrimc 75531938=0x48086a2

kdxbrsno 0

kdxbrbksz 8060

kdxbr2urrc 0

row#0[8050] dba: 75532865=0x4808a41 ==> pointer to the second intermediate branch block
col 0; len 4; (4): <c3 0d 46 46 ==> first column (ID) value by which to navigate,
note that as it has such a high cardinality ...

col 1; TERM ==> the second column (CODE) is not required to
identify the necessary path and so the branch entry is terminated at this point
row#1[8040] dba: 75537504=0x4809c60

col 0; len 4; (4): c3 1la 32 28

col 1; TERM

row#2[8030] dba: 75563462=0x48101c6

col 0; len 4; (4): c3 27 le Oa

col 1; TERM

————— end of branch block dump -----

End dump data blocks tsn: 21 file#: 18 minblk 33418 maxblk 33418

**% So the index performed in exactly the same manner for both indexes ...

