**%* Create a new table called david bowie that we'll be searching for in a moment
SQL> CREATE table david bowie (id NUMBER) ;

Table created.

*** Create a table from dba objects which includes a row for the newly created david bowie table
SQL> CREATE TABLE reverse_stuff AS SELECT * FROM dba objects;

Table created.

*** Start by creating a normal, non-reverse key index
SQL> CREATE INDEX reverse object name i ON reverse stuff (object name);

Index created.

*** Let's collect stats

SQL> EXEC dbms_ stats.gather table stats (ownname=>'BOWIE', tabname=>'REVERSE STUFF',
estimate percent=> null, cascade=> TRUE, method opt=> 'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

*** Let's see if our normal little index will be used for the following query with a LIKE and a
leading wildcard

SQL> set feedback 1

SQL> SELECT * FROM reverse stuff WHERE object name LIKE '$BOWIE';

1 row selected.

Execution Plan

Plan hash value: 518781941

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time
| 0 | SELECT STATEMENT | | 722 | 62814 | 44 (3)| 00:00:01
|[* 1 | TABLE ACCESS FULL| REVERSE STUFF | 722 | 62814 | 44 (3)] 00:00:01 |

Predicate Information (identified by operation id):

1 - filter ("OBJECT NAME" LIKE 'S$BOWIE')

Statistics
1 recursive calls
0 db block gets
191 consistent gets
0 physical reads
0 redo size
1205 bytes sent via SQL*Net to client
396 Dbytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
1 rows processed

*** We note the index is not used (or considered) because of the leading wildcard
*** But it did correctly return the one row of interest as expected

*** Partial extract from a 10053 trace
SINGLE TABLE ACCESS PATH

Column (#2): OBJECT_NAME (VARCHARZ)
AvgLen: 19.00 NDV: 10862 Nulls: O Density: 9.2064e-005

Table: REVERSE STUFF Alias: REVERSE STUFF
Card: Original: 14437 Rounded: 722 Computed: 721.85 Non Adjusted: 721.85
Access Path: TableScan
Cost: 43.52 Resp: 43.52 Degree: 0O
Cost_io: 43.00 Cost_cpu: 5388539
Resp io: 43.00 Resp cpu: 5388539
Best:: AccessPath: TableScan
Cost: 43.52 Degree: 1 Resp: 43.52 Card: 721.85 Bytes: 0

*** The 10053 trace shows that the index was not considered by the CBO

*** Unfortunately, the suggestion to use a Reverse Key Index makes matters a lot worse
*** Let's rebuild the index as a reverse key index
SQL> ALTER INDEX reverse object name i REBUILD ONLINE REVERSE COMPUTE STATISTICS;

Index altered.

*** Let's now programmatically reverse the required text and see what happens
SQL> SELECT * FROM reverse stuff WHERE object_name LIKE 'EIWOBS';

no rows selected

Execution Plan

Plan hash value: 518781941

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) | Time
| 0 | SELECT STATEMENT | | 1| 87 | 44 (3)] 00:00:01 |
| * 1 | TABLE ACCESS FULL| REVERSE STUFF | 1 87 | 44 (3) 00:00:01

Predicate Information (identified by operation id):

1 - filter ("OBJECT NAME" LIKE 'EIWOB%')

Statistics
1 recursive calls
0 db block gets
190 consistent gets
0 physical reads
0 redo size
995 bytes sent via SQL*Net to client
385 Dbytes received via SQL*Net from client
1 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
0 rows processed

*** Worse because it still performs a full table scan
*** Partial extract from a 10053 trace

SINGLE TABLE ACCESS PATH
Table: REVERSE STUFF Alias: REVERSE_STUFF
Card: Original: 14437 Rounded: 14437 Computed: 14437.00 Non Adjusted: 14437.00
Access Path: TableScan
Cost: 43.36 Resp: 43.36 Degree: O
Cost_io: 43.00 Cost_cpu: 3785999
Resp io: 43.00 Resp cpu: 3785999
Best:: AccessPath: TableScan
Cost: 43.36 Degree: 1 Resp: 43.36 Card: 14437.00 Bytes: O

*** worse still as it still doesn't even consider the index

*** and much much worse, no longer returns the correct results (now returns no rows !!)

*** as of course Oracle has no idea that the searched data has been programmatically reversed and is
naturally searching for an object name beginning with 'EIWOB'

*** Another Oracle index related myth that can be easily disclaimed with a few very simple tests

*** However, you could achieve success with the use of a Function-Based Index using the REVERSE
function

SQL> CREATE INDEX reverse stuff func_idx ON reverse_ stuff(reverse(object name));

Index created.

SQL> EXEC dbms stats.gather table stats (ownname=>'BOWIE', tabname=>'REVERSE STUFF',
estimate_percent=> null, cascade=> TRUE, method opt=> 'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

*** Let's now perform this troublesome select statement by using the REVERSE function to reverse the
search column
*** and programmatically reverse the required search string which places the wildcard at the end

SQL> SELECT * FROM reverse stuff WHERE reverse(object name) LIKE 'EIWOBS';

1 row selected.

Execution Plan

Plan hash value: 3662976059

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time

|

| 0 | SELECT STATEMENT | | 2 | 196 | 3 (0)| 00:00:01

| 1 TABLE ACCESS BY INDEX ROWID| REVERSE STUFF | 2 196 | 3 (0)| 00:00:01 |
| * 2 INDEX RANGE SCAN | REVERSE_STUFF_FUNC_IDX | 2 | | 2 (0)| 00:00:01

Predicate Information (identified by operation id):

2 - access (REVERSE ("OBJECT NAME") LIKE 'EIWOB%')
filter (REVERSE ("OBJECT NAME") LIKE 'EIWOBS%')

Statistics
1 recursive calls
0 db block gets
4 consistent gets
0 physical reads
0 redo size
1203 bytes sent via SQL*Net to client
396 Dbytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
1 rows processed

*** The index is used and the correct output is generated

*** You can tidy the SELECT statement up a bit and make it more readable by using the REVERSE
function on the search string as well

SQL> SELECT * FROM reverse stuff WHERE reverse(object name) LIKE REVERSE ('3$BOWIE') ;

1 row selected.

Execution Plan

Plan hash value: 3662976059

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time

|

0	SELECT STATEMENT		2	196	3 (0)	00:00:01
1 TABLE ACCESS BY INDEX ROWID	REVERSE STUFF	2 196	3 (0)	00:00:01		
* 2 INDEX RANGE SCAN	REVERSE_STUFF_FUNC_IDX	2		2 (0)	00:00:01	

Predicate Information (identified by operation id):

2 - access (REVERSE ("OBJECT NAME") LIKE 'EIWOB%')
filter (REVERSE ("OBJECT NAME") LIKE 'EIWOB%')

Statistics
1 recursive calls
0 db block gets
4 consistent gets
0 physical reads
0 redo size
1203 bytes sent via SQL*Net to client
396 Dbytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
1 rows processed

