
*** First create a little table, with 3 columns

SQL> create table hist_test (id1 number, id2 number, id3 number);

Table created.

*** The first column is populated by rownum and is perfectly distributed, for now

*** The second column is perfectly distributed with a value between 1 and 10 with 100 even
occurrences of each value

*** The third column is also perfectly distributed but is "special" in that it only has the
one unique value

SQL> insert into hist_test (id1, id2, id3) select rownum, mod(rownum,10)+1, 100 from dual
connect by level <= 1000000;

1000000 rows created.

*** We're now going to "ruin" the perfect distribution of the first column by creating a
rather nasty outlier value

SQL> update hist_test set id1=1000000000 where id1=1000000;

1 row updated.

SQL> COMMIT;

Commit complete.

*** So of the three columns, column one could benefit from a histogram but it would be
pointless to have histograms on the other 2 columns ...

SQL> alter table hist_test add primary key(id1);

Table altered.

*** Let's collect statistics with no histograms, using what were the method_opt default
settings for 9i, 'FOR ALL COLUMNS SIZE 1'

SQL> exec DBMS_STATS.GATHER_TABLE_STATS (null, 'HIST_TEST', method_opt => 'FOR ALL COLUMNS
SIZE 1', estimate_percent=>null);

PL/SQL procedure successfully completed.

*** If we look at dba_tab_histograms, we'll see that indeed there are no histograms
*** Just the standard 2 rows per columns to capture the low and high end points for each
column

SQL> select * from dba_tab_histograms where table_name = 'HIST_TEST' order by column_name,
endpoint_number;

OWNER TABLE_NAME COLUMN_NAME ENDPOINT_NUMBER ENDPOINT_VALUE ENDPOINT_ACT
------ ------------ ------------ --------------- -------------- ------------
BOWIE HIST_TEST ID1 0 1
BOWIE HIST_TEST ID1 1 1000000000
BOWIE HIST_TEST ID2 0 1
BOWIE HIST_TEST ID2 1 10
BOWIE HIST_TEST ID3 0 100
BOWIE HIST_TEST ID3 1 100

6 rows selected.

*** Checking dba_tab_columns also confirms there are no histograms

*** Interestingly, if you look at the density column, they're all perfect.

*** Column 1 would indeed return .000001 (0.0001%) of data for a specific value

*** Column 2 would indeed return .1 (10%) of data for a specific value

*** Column 3 would indeed return 1 (100%) of data for a specific value

SQL> select table_name, column_name, num_distinct, density, num_buckets, histogram from
dba_tab_columns where table_name = 'HIST_TEST';

SQL> select table_name, column_name, num_distinct, density, num_buckets, histogr
am from dba_tab_columns where table_name = 'HIST_TEST';

TABLE_NAME COLUMN_NAME NUM_DISTINCT DENSITY NUM_BUCKETS HISTOGRAM
------------ ------------ ------------ ---------- ----------- ---------------
HIST_TEST ID1 1000000 .000001 1 NONE
HIST_TEST ID2 10 .1 1 NONE
HIST_TEST ID3 1 1 1 NONE

*** Let's now generate some "workload" so Oracle can see that indeed we use all three columns
in SQL statements in our environment ...

SQL> select count(*) from hist_test where id1 = 1;

 COUNT(*)

 1

SQL> select count(*) from hist_test where id2 = 1;

 COUNT(*)

 100

SQL> select count(*) from hist_test where id3 = 1;

 COUNT(*)

 0

*** Let's also run a query using the first column to highlight why a histogram would be
useful here

SQL> select * from hist_test where id1 > 1000000;

 ID1 ID2 ID3
---------- ---------- ----------
1000000000 1 100

Execution Plan
--
Plan hash value: 880336319

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 999K| 9755K| 501 (4)| 00:00:07 |
|* 1 | TABLE ACCESS FULL| HIST_TEST | 999K| 9755K| 501 (4)| 00:00:07 |

*** Notice the expected rows returned is 999K, not 1 and that a Full Table Scan is being
performed !!

*** Let's now gather stats again, but this time we'll let Oracle decide which columns should
have histograms and which columns don't need them
*** by using the FOR ALL COLUMNS SIZE AUTO default option with 10g

SQL> exec DBMS_STATS.GATHER_TABLE_STATS (null, 'HIST_TEST', method_opt => 'FOR ALL COLUMNS
SIZE AUTO', estimate_percent=>null);

PL/SQL procedure successfully completed.

*** Now let's look at what histograms Oracle has generated for us ...

SQL> select * from dba_tab_histograms where table_name = 'HIST_TEST' order by co
lumn_name, endpoint_number;

OWNER TABLE_NAME COLUMN_NAME ENDPOINT_NUMBER ENDPOINT_VALUE ENDPOINT_ACT
------ ------------ ------------ --------------- -------------- ------------
BOWIE HIST_TEST ID1 0 1
BOWIE HIST_TEST ID1 1 1000000000
BOWIE HIST_TEST ID2 100000 1
BOWIE HIST_TEST ID2 200000 2
BOWIE HIST_TEST ID2 300000 3
BOWIE HIST_TEST ID2 400000 4
BOWIE HIST_TEST ID2 500000 5
BOWIE HIST_TEST ID2 600000 6
BOWIE HIST_TEST ID2 700000 7
BOWIE HIST_TEST ID2 800000 8
BOWIE HIST_TEST ID2 900000 9
BOWIE HIST_TEST ID2 1000000 10
BOWIE HIST_TEST ID3 1000000 100

13 rows selected.

*** The results are a little disappointing ...

*** Column 1 which perhaps needed a histogram because of the outlier value has actually not
had a histogram created

*** Columns 2 which was perfectly distributed now suddently has a histogram (it now has 10
buckets, one for each value)

*** Column 3 which also really had no need for a histogram has also suddenly been given a
histogram, with 1 bucket for it's only value

*** Let's see what impact this now has on the DENSITY values, remembering that the density
calculations differ for columns with histograms ...

SQL> select table_name, column_name, num_distinct, density, num_buckets, histogram from
dba_tab_columns where table_name = 'HIST_TEST';

TABLE_NAME COLUMN_NAME NUM_DISTINCT DENSITY NUM_BUCKETS HISTOGRAM
------------ ------------ ------------ ---------- ----------- ---------------
HIST_TEST ID1 1000000 .000001 1 NONE
HIST_TEST ID2 10 .0000005 10 FREQUENCY
HIST_TEST ID3 1 .0000005 1 FREQUENCY

*** Column 1 is fine, its density hasn't changed but remember, this column could really have
benefited with a histogram and it doesn't have one

*** Column 2 now has a density value that is totally inaccurate, thanks to the unnecessary
histogram

*** Column 3 now has a density value that is also totally inaccurate, thanks to the
unnecessary histogram

*** Let's re-run the query that used the first column to see if it now runs better (doubtful
if the statistics don't change ...)

SQL> select * from hist_test where id1 > 1000000;

 ID1 ID2 ID3
---------- ---------- ----------
1000000000 1 100

Execution Plan
--
Plan hash value: 880336319

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 999K| 9755K| 501 (4)| 00:00:07 |
|* 1 | TABLE ACCESS FULL| HIST_TEST | 999K| 9755K| 501 (4)| 00:00:07 |

*** No change :(

*** Of the 3 columns, Oracle has in one way or the other to differing degrees stuffed up all
three columns with the AUTO method_opt option

*** Just to highlight how a histogram would have been useful for the first column, let's
create a histogram manually ...

SQL> exec DBMS_STATS.GATHER_TABLE_STATS (null, 'HIST_TEST', method_opt => 'FOR COLUMNS ID1
SIZE 254', estimate_percent=>null);

PL/SQL procedure successfully completed.

*** Now run the same query again ...

SQL> select * from hist_test where id1 > 1000000;

 ID1 ID2 ID3
---------- ---------- ----------
1000000000 1 100

Execution Plan
--

Plan hash value: 3591145889

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		3937	39370	20 (0)	00:00:01
1	TABLE ACCESS BY INDEX ROWID	HIST_TEST	3937	39370	20 (0)	00:00:01
* 2	INDEX RANGE SCAN	SYS_C006287	3937		11 (0)	00:00:01

*** Although the costings are not perfect, at least they're now "good enough" to generate a
more appropriate execution plan

*** Conclusion, be very very careful with the 10g default behaviour for method_opt and
considering creating histograms manually on a need to have them basis only ...

