*** Start by creating a simple table

SQL> CREATE TABLE outlier (id NUMBER, name VARCHAR(20), outlier date DATE);

Table created.

*** we now populate the table with a whole bunch of rows.

*** The date column is going to be the interesting one, initially it's being populated with a series
of uniformly distributed dates,

*** going back 10000 days

SQL> INSERT INTO outlier SELECT rownum, 'RADIOHEAD', SYSDATE-10000+MOD (rownum,10000) FROM dual
CONNECT BY LEVEL <= 1000000;

1000000 rows created.

SQL> COMMIT;

Commit complete.
*** We now create an index on the date column

SQL> CREATE INDEX outlier date i ON outlier (outlier date);
Index created.

SQL> exec DBMS STATS.GATHER TABLE STATS (ownname=> null, tabname=>'outlier', cascade=> TRUE,
estimate percent=> null, method opt=> 'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

*** The dates are perfectly distributed and go back to 12 June 1980

SQL> SELECT MIN (outlier date) "Min Date", MAX (outlier date) "Max Date" FROM outlier;

Min Date Max Date

12/JUN/80 28/0CT/07

*** When we perform a simple select of everything greater than the start of the current day, we use
the index as expected.
*** Note the cardinality is perfect.

SQL> SELECT * FROM outlier WHERE outlier date > '28/0CT/2007';
100 rows selected.

Elapsed: 00:00:00.03

Execution Plan

Plan hash value: 4074660270

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) | Time

0	SELECT STATEMENT		100	2200	103(0)	00:00:02
1	TABLE ACCESS BY INDEX ROWID	outlier	100	2200	103(0)	00:00:02
* 2 INDEX RANGE SCAN	outlier_DATE_I	100		3(0)	00:00:01	

Predicate Information (identified by operation id):

2 - access("outlier DATE">TO_DATE ('2007-10-28 00:00:00', 'yyyy-mm-dd hh24:mi:ss'))

Statistics

1 recursive calls

0 db block gets

110 consistent gets
1 physical reads
0 redo size

2324 Dbytes sent via SQL*Net to client

462 Dbytes received via SQL*Net from client
8 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)

100 rows processed

*** Now let’s introduce an outlier date, perhaps used by an application to denote some default
characteristic or value

*** The value is 8 Jan 9999, David Bowie's birthday way way way in the future

SQL> INSERT INTO outlier VALUES (1000001, 'DAVID BOWIE', '08/JAN/9999');

1 row created.

SQL> COMMIT;

Commit complete.

SQL> exec DBMS_STATS.GATHER TABLE STATS (ownname=> null, tabname=>'outlier', cascade=> TRUE,
estimate percent=> null, method opt=> 'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

*** When we perform the same select as previous, remembering we have only added in one additional
date,

*** Note that a full table scan is perform on the same data (plus one row) and that the rows
estimate is way way off

SQL> SELECT * FROM outlier WHERE outlier date > '28/0CT/2007';

101 rows selected.

Elapsed: 00:00:03.50

Execution Plan

Plan hash value: 384055367

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time
| 0 | SELECT STATEMENT | | 996K | 20M| 873 (3)] 00:00:11 |
|* 1 | TABLE ACCESS FULL| OUTLIER | 996K | 20M| 873 (3)] 00:00:11

Predicate Information (identified by operation id):

1 - filter("outlier DATE">TO DATE('2007-10-28 00:00:00"',
'yyyy-mm-dd hh24:mi:ss'))

Statistics
1 recursive calls
0 db block gets
3877 consistent gets
3865 physical reads
0 redo size
2355 Dbytes sent via SQL*Net to client
462 Dbytes received via SQL*Net from client
8 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
101 rows processed

*** The outlier value has made the CBO go horribly wrong as the CBO basically uses the following
formula in its calculation of the selectivity:

*** (max_value - predicate value) / (max_value - min value) = (days between 8 Jan 9999 and 28 Oct
2007) / (days between 8 Jan 9999 and 12 Jan 1980)

*** which equals a value very very close to 100% of all rows

*** So outlier values can cause all sorts of issues with the CBO.

