
*** Indexes also don't particularly like outlier values as they prevent 

space efficient 9010 splits 

 

*** First create a simple table with a primary key on the ID column 

 

 

SQL> CREATE TABLE outlier2 (id NUMBER CONSTRAINT outlier2_pk_i PRIMARY KEY, 

name VARCHAR2(20)); 

 

Table created. 

 

 

*** Now populate the table with monotonically increasing values for the ID 

column 

 

 

SQL> INSERT INTO outlier2 SELECT rownum, 'RADIOHEAD' FROM dual CONNECT BY 

LEVEL <= 1000000; 

 

1000000 rows created. 

 

SQL> COMMIT; 

 

Commit complete. 

 

 

*** Let's see just how compact and efficient our index is on the primary 

key 

 

 

SQL> ANALYZE INDEX outlier2_pk_i VALIDATE STRUCTURE; 

 

Index analyzed. 

 

SQL> SELECT LF_BLKS, BTREE_SPACE, PCT_USED FROM INDEX_STATS; 

 

   LF_BLKS BTREE_SPACE   PCT_USED 

---------- ----------- ---------- 

      1875    15032128        100 

 

 

*** As expected, the index is entirely used with no free space as Oracle 

has been generating 90-10 splits, 

*** leaving behind totally full index leaf blocks. Perfect !! 

 

---------------------- 

 

*** Now let’s repeat the demo, but this time introduce an outlier value 

before inserting in all the data  

 

 

SQL> CREATE TABLE outlier3 (id NUMBER CONSTRAINT outlier3_pk_i PRIMARY KEY, 

name VARCHAR2(20)); 

 

Table created. 

 

 

*** Here's the outlier value, 9999999999999 which is going to be way way 

outside the normal range of values 

*** and unfortunately, the maximum value in the table now and always moving 

forward ... 



 

 

SQL> INSERT INTO outlier3 VALUES (9999999999999, 'DAVID BOWIE'); 

 

1 row created. 

 

SQL> COMMIT; 

 

Commit complete. 

 

 

*** Now when we insert our rows, none of these values are ever the maximum 

value 

*** Therefore as a leaf block is filled, a 50-50 block split is performed 

 

 

SQL> INSERT INTO outlier3 SELECT rownum, 'RADIOHEAD' FROM dual CONNECT BY 

LEVEL <= 1000000; 

 

1000000 rows created. 

 

SQL> COMMIT; 

 

Commit complete. 

 

 

*** The impact on the space efficiency of the index is significant ... 

 

 

SQL> ANALYZE INDEX outlier3_pk_i VALIDATE STRUCTURE; 

 

Index analyzed. 

 

SQL> SELECT LF_BLKS, BTREE_SPACE, PCT_USED FROM INDEX_STATS; 

 

   LF_BLKS BTREE_SPACE   PCT_USED 

---------- ----------- ---------- 

      3681    29528320         51 

 

 

 

*** Where previously we had a fully utilised index structure, now we are 

only using 51% of the index 

*** The other 49% is totally wasted and redundant as this space cannot be 

used be subsequent inserts 

*** Unless subsequent deletes totally empty an index leaf block and the 

block is placed again on the freelist ... 

 


