**% create a table with one column (ID) having many distinct values and one column (CODE) having very few

SQL> CREATE TABLE ziggy_stuff AS SELECT mod(rownum,500000) id, mod(rownum,5) code, 'ZIGGY' name FROM dual
CONNECT BY LEVEL <= 1000000;

Table created.

**% However, add a row that has a very distinct CODE value. Although there are only 6 different CODE
values, there's only one occurance of value 42

SQL> INSERT INTO ziggy_stuff VALUES (42, 42, 'BOWIE');
1 row created.

SQL> COMMIT;

Commit complete.

SQL> exec dbms_stats.gather_table_stats(ownname=>null, tabname=>'ZIGGY_STUFF', cascade=> true,
estimate_percent=> null, method_opt=> 'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

**% Create a histogram on the CODE value so that the CBO knows there's very few CODEs with a value of 42

sQL> exec dbms_stats.gather_table_stats(ownname=>null, tabname=>'ZIGGY_STUFF', cascade=> true,
estimate_percent=> null, method_opt=> 'FOR COLUMNS CODE SIZE 10');

PL/SQL procedure successfully completed.

*%% First, create an index with the ID column being the leading column
SQL> CREATE INDEX ziggy_stuff_id_code_i ON ziggy_stuff(id, code);
Index created.

SQL> SELECT * FROM ziggy_stuff WHERE id = 42 AND code = 42;

1 row selected.

Execution Plan

Plan hash value: 975820249

| Id | operation | Name | Rows | Bytes | Cost (%CPU)| Time |
| 0 | SELECT STATEMENT | | 1| 13 | 4 (0)| 00:00:01
| 1 | TABLE ACCESS BY INDEX ROWID| ZIGGY_STUFF | 1| 13 | 4 (0)| 00:00:01
[* 2] INDEX RANGE SCAN | ZIGGY_STUFF_ID_CODE_I | 1| | 3 (0)| 00:00:01

2 - access("ID"=42 AND "CODE"=42)

Statistics
0 recursive calls
0 db block gets
5 consistent gets
0 physical reads
0 redo size
522 bytes sent via SQL*Net to client
396 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
1 rows processed

ke

AS expected, search on both columns and the index is used

SQL> SELECT * FROM ziggy_stuff WHERE id = 42;

3 rows selected.

Execution Plan

Plan hash value: 975820249

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
| 0 | SELECT STATEMENT | | 2 | 26 | 6 (0)| 00:00:01
| 1 | TABLE ACCESS BY INDEX ROWID| ZIGGY_STUFF | 2 | 26 | 6 (0)| 00:00:01
[* 2] INDEX RANGE SCAN | ZIGGY_STUFF_ID_CODE_I | 2 | | 3 (0)| 00:00:01

Predicate Information (identified by operation id):

2 - access("1ID"=42)

Statistics
0 recursive calls
0 db block gets
7 consistent gets
0 physical reads
0 redo size
572 bytes sent via SQL*Net to client
396 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
3 rows processed

Search on only the leading column (ID) and again the index can be used effectively

SQL> SELECT * FROM ziggy_stuff WHERE code = 42;

1 row selected.

Execution Plan

Plan hash value: 4141990364

| Id | operation | Name | Rows | Bytes | Cost (%CPU)| Time
| 0 | SELECT STATEMENT | | 1| 13 | 307 (15)| 00:00:03]
|* 1 | TABLE ACCESS FULL| ZIGGY_STUFF | 1| 13 | 307 (15)| 00:00:03]

1 - filter("CODE"=42)

Statistics
1 recursive calls
db block gets
2605 consistent gets
0 physical reads
0 redo size
522 bytes sent via SQL*Net to client
396 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
1 rows processed

However, search on the CODE column only and the index can not be used.
As the leading column is very selective, a CODE value of 42 could potentially be referenced within any
of the index leaf blocks

ke

Let's now re-create the index but with the columns the other way around (CODE now the Teading column)

SQL> DROP INDEX ziggy_stuff_id_code_i;

Index dropped.

SQL> CREATE INDEX ziggy_stuff_code_id_i ON ziggy_stuff(code,id);

Index created.

SQL> SELECT * FROM ziggy_stuff WHERE id = 42 AND code = 42;

1 row selected.

Execution Plan

Plan hash value: 442388428

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
| 0 | SELECT STATEMENT | | 1| 13 | 4 (0)| 00:00:01
| 1 | TABLE ACCESS BY INDEX ROWID| ZIGGY_STUFF | 1 | 13 | 4 (0)| 00:00:01
[* 2] INDEX RANGE SCAN | ZIGGY_STUFF_CODE_ID_I | 1| | 3 (0)| 00:00:01

2 - access("CODE"=42 AND "ID"=42)

Statistics
1 recursive calls
0 db block gets
4 consistent gets
2 physical reads
0 redo size
522 bytes sent via SQL*Net to client
396 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
1 rows processed

*%% Again as expected, index is used when both columns are searched

SQL> SELECT * FROM ziggy_stuff WHERE code = 42;

1 row selected.

Execution Plan

Plan hash value: 442388428

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
| 0 | SELECT STATEMENT | | 1| 13 | 4 (0)| 00:00:01 |
| 1 | TABLE ACCESS BY INDEX ROWID| ZIGGY_STUFF | 1| 13 | 4 (0)| 00:00:01
[* 2] INDEX RANGE SCAN | ZIGGY_STUFF_CODE_ID_I | 1| | 3 (0)| 00:00:01

2 - access("CODE"=42)

Statistics
1 recursive calls
0 db block gets
4 consistent gets
0 physical reads
0 redo size
522 bytes sent via SQL*Net to client
396 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
1 rows processed

ke

when searching on just the CODE column for the value 42, with the_histogram in place, the CBO
estimates there's only the one row and so can use the index effectively

SQL> SELECT * FROM ziggy_stuff WHERE id = 42;

3 rows selected.

Execution Plan

Plan hash value: 2304838088

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
| 0 | SELECT STATEMENT | | 2 | 26 | 11 (0)| 00:00:01
| 1 | TABLE ACCESS BY INDEX ROWID| ZIGGY_STUFF | 2 | 26 | 11 (0)| 00:00:01
[* 2] INDEX SKIP SCAN | ZIGGY_STUFF_CODE_ID_TI | 2 | | 8 (0)| 00:00:01

2 - access("1ID"=42)
filter("1D"=42)

Statistics

1 recursive calls
0 db block gets

19 consistent gets

10 physical reads
0 redo size

572 bytes sent via SQL*Net to client

396 bytes received via sQL*Net from client
2 SQL*Net roundtrips to/from client

0 sorts (memory)
0 sorts (disk)
3 rows processed

*** when searching on just the ID column, the CBO knows there are only 6 distinct CODE column values

**% The CBO can effectively probe the index in 6 different Tocations and retrieve all the necessary rows.

At 19 consistent gets, it's not as good as the 7 consistent gets with the previous index

**% However, it's not too bad and much better than the approx 2605 consistent gets required for a full
table scan

%% perhaps the second index will suffice, making the overheads associated having a second index
unnecessary

