```
*** Create a basic little table
SQL> CREATE TABLE index_some_stuff (id number, status varchar2(20), description varchar2(50));
Table created.
*** Populate it with all STATUS values set to "PROCESSED"
SQL> INSERT INTO index_some_stuff SELECT rownum, 'PROCESSED', 'NOT REALLY INTERESTED WITH THIS ROW' FROM DUAL CONNECT BY LEVEL <= 1000000;
Table created.
*** But set one row to have a STAUS of "BOWIE"
SQL> UPDATE index_some_stuff SET status = 'BOWIE', description = 'ROW OF INTEREST' WHERE id =
424242;
1 row updated.
SOL> COMMIT;
Commit complete.
*** So we have lots and lots of STATUS values that we're not really intertested in and a "few" that
SQL> SELECT status, count(*) FROM index_some_stuff GROUP BY status;
          COUNT(*)
PROCESSED 999999
*** Let's create a normal index on the STATUS column
SQL> CREATE INDEX index some stuff i 1 ON index some stuff(status);
Index created.
*** Let's collect stats on the table
SQL> exec dbms_stats.gather_table_stats(ownname=>'BOWIE', tabname=> 'INDEX_SOME_STUFF', estimate_percent=> null, method_opt=>'FOR ALL COLUMNS SIZE 1', cascade=> true);
PL/SQL procedure successfully completed.
*** Let's search for those rows with a status of "BOWIE"
SQL> SELECT * FROM index_some_stuff WHERE status = 'BOWIE';
     ID STATUS
                            DESCRIPTION
-----
   424242 BOWIE
                            ROW OF INTEREST
1 row selected.
Execution Plan
Plan hash value: 290213492
```

1 - filter("STATUS"='BOWIE')

Predicate Information (identified by operation id):

Statistics

- 0 recursive calls
 - 0 db block gets
 - 7765 consistent gets
 - 7754 physical reads 0 redo size
 - 546 bytes sent via SQL*Net to client 396 bytes received via SQL*Net from client
 - 2 SQL*Net roundtrips to/from client
 - 0 sorts (memory)

 - 0 sorts (disk) 1 rows processed

*** add a histogram on the STATUS column

SQL> exec dbms_stats.gather_table_stats(ownname=>'BOWIE', tabname=> 'INDEX_SOME_STUFF', estimate_percent=> null, method_opt=>'FOR COLUMNS STATUS SIZE 5');

PL/SQL procedure successfully completed.

*** Let's search again for those rows with a status of "BOWIE"

SQL> SELECT * FROM index_some_stuff WHERE status = 'BOWIE';

DESCRIPTION ID STATUS 424242 BOWIE ROW OF INTEREST

1 row selected.

Execution Plan

Plan hash value: 3846250962

Id Operation	Name	Rows	;	Bytes	Cost	(%CPU) Time	
0 SELECT STATEMENT 1 TABLE ACCESS BY INDEX I * 2 INDEX RANGE SCAN	 ROWID INDEX_SOME_STUFF INDEX_SOME_STUFF_I_1	i	1 1 1		4	(0) 00:00:01 (0) 00:00:01 (0) 00:00:01	i

Predicate Information (identified by operation id):

```
2 - access("STATUS"='BOWIE')
```

Statistics

- 0 recursive calls
- 0 db block gets
- 5 consistent gets
- 0 physical reads 0 redo size
- 546 bytes sent via SQL*Net to client
- 396 bytes received via SQL*Net from client
 - 2 SQL*Net roundtrips to/from client
 - 0 sorts (memory)
 - 0 sorts (disk)
 - 1 rows processed
- *** And as expected, we have used our index.
- *** But note that the index is predominately made up of "PROCESSED" values.
- *** Perhaps we can improve on the 5 Consistent Reads we required for this index access \dots
- *** Let's create a function-based index that only stores the "BOWIE" STATUS values

SQL> CREATE INDEX index_some_stuff_i_2 ON index_some_stuff(DECODE(status, 'BOWIE', 'BOWIE', NULL)) COMPUTE STATISTICS;

Index created.

*** and create stats for the virtual column

SQL> exec dbms_stats.gather_table_stats(ownname=>'BOWIE', tabname=> 'INDEX_SOME_STUFF', estimate_percent=> null, method_opt=>'FOR ALL HIDDEN COLUMNS SIZE 1', cascade=> true);

PL/SQL procedure successfully completed.

*** Let's compare some stats on these two indexes

SQL> SELECT index_name, blevel, leaf_blocks, distinct_keys, num_rows FROM dba_indexes WHERE owner='BOWIE' AND table_name='INDEX_SOME_STUFF';

INDEX_NAME	BLEVEL	LEAF_BLOCKS	DISTINCT_KEYS	NUM_ROWS
INDEX SOME STUFF I 1	2	2924	2	1000000
INDEX SOME STUFF I 2	0	1	1	1

- *** Note that the "normal" index has a BLEVEL of 2 and 2924 leaf blocks
- *** Note however the function-based index has a blevel of 0 and just the 1 leaf block \dots
- *** Let's run the same query now

SQL> SELECT * FROM bowie.index_some_stuff WHERE(DECODE(status, 'BOWIE', 'BOWIE', null)) = 'BOWIE';

1 row selected.

Execution Plan

Plan hash value: 2019748526

Id Operation	Name	Ro	ows	Bytes	Cost	(%CPU)	Time
0 SELECT STATEMENT 1 TABLE ACCESS BY INDEX ROWII * 2 INDEX RANGE SCAN		-	1 1 1	51	1 2	2 (0)	00:00:01 00:00:01 00:00:01

Predicate Information (identified by operation id):

2 - access(DECODE("STATUS", 'BOWIE', 'BOWIE', NULL) = 'BOWIE')

Statistics

- 0 recursive calls
- 0 db block gets
- 2 consistent gets
 0 physical reads
- 0 redo size
- 546 bytes sent via SQL*Net to client
- 396 bytes received via SQL*Net from client
 - 2 SQL*Net roundtrips to/from client
 - 0 sorts (memory)
 - 0 sorts (disk)
 - 1 rows processed

*** and we note consistent reads have dropped from 5 down to just 2 ...