
Oracle B-Tree Index Internals:
Rebuilding The Truth

Richard Foote

Richard Foote - Index Internals 1

Objectives

• Dispel many myths associated with Oracle B-Tree
Indexes

• Explain how to investigate index internals

• Explain and prove how Oracle B-Tree Indexes work

• Explain when index rebuilds might be appropriate

Richard Foote - Index Internals 2

“Expert” quotes regarding Indexes

• “Note that Oracle indexes will spawn to a fourth
level only in areas of the index where a massive
insert has occurred, such that 99% of the index
has three levels, but the index is reported as
having four levels. ” Don Burleson:
comp.databases.oracle.server newsgroup post
dated 31st January 2003

• “If the index clustering factor is high, an index
rebuild may be beneficial”. Don Burleson: Inside
Oracle Indexing dated December 2003 at
www.DBAzine.com

Richard Foote - Index Internals 3

“Expert” quotes regarding Indexes

• “The binary height increases mainly due to the size of the table and
the fact that the range of values in the indexed columns is very
narrow”. Richard Niemiec Oracle Performance Tuning 1999.

• “The index will be imbalanced if the growth is all on one side such
as when using sequence numbers as keys… Reading the new entries
will take longer”. Richard Niemiec Tuning for the Advanced DBA;
Others will Require Oxygen 2001

• “This tells us a lot about indexes, but what interests me is the space
the index is taking, what percentage of that is really being used and
what space is unusable because of delete actions. Remember, that
when rows are deleted, the space is not re-used in the index.” John
Wang: Resizing Your Indexes When Every Byte Counts at
www.DBAzine.com

Richard Foote - Index Internals 4

“Expert” quotes regarding Indexes

• Index diagram showing an “unbalanced” Oracle index with leaf
nodes to the right of the index structure having more levels than
leaf nodes to the left. Mike Hordila: Setting Up An Automated Index
Rebuilding System at otn.oracle.com

• “Deleted space is not reclaimed automatically unless there is an
exact match key inserted. This leads to index broadening and
increase in the indexes clustering factor. You need to reorganize to
reclaim white space. Generally rebuild index when the clustering
factor exceeds eight times the number of dirty blocks in the base
table, when the levels exceed two or when there are excessive
brown nodes in the index”” Mike Ault Advanced Oracle Tuning
Seminar at www.tusc.com/oracle/download/author_aultm.html

Richard Foote - Index Internals 5

Metalink Quote

Richard Foote - Index Internals 6

“Rebuild the index when:

- deleted entries represent 20% or more of the current entries.
- the index depth is more then 4 levels.”

It then details a script that will basically automatically Validate
Structure all indexes in database that do not belong to SYS or
SYSTEM !!

Oracle Corporation as responsible as anyone.

For Example - Metalink Note: 122008.1 states:

Classic Oracle Index Myths

• Oracle B-tree indexes can become “unbalanced”
over time and need to be rebuilt

• Deleted space in an index is “deadwood” and over
time requires the index to be rebuilt

• If an index reaches “x” number of levels, it
becomes inefficient and requires the index to be
rebuilt

• If an index has a poor clustering factor, the index
needs to be rebuilt

• To improve performance, rebuild indexes regularly

Richard Foote - Index Internals 7

Introduction to B-Tree Indexes

• Oracle implements a form of B*Tree Index

• Oracle’s B-Tree index is always balanced

• Index entries are always ordered

• An update consists of a deleted and a insert

• Leaf entries consist of the index value and
corresponding rowid

• Index scans use ‘sequential’ single block reads
(with the exception of Fast Full Index scan)

Richard Foote - Index Internals 8

Oracle B-Tree Index

Richard Foote - Index Internals 9

Null- L1
Bolan – L2
Floyd – L3

ABBA rowid

ACDC rowid

Move- L4
Queen– L5
Ziggy – L6

Null- B1
Move – B2

Bolan rowid

Bowie rowid

Clash rowid

Floyd rowid

Kinks rowid

Lennon rowid

Move rowid

Police rowid

Pop rowid

Queen rowid

Reed rowid

Velvet rowid

Ziggy rowid

Root Block

Branch Blocks

Leaf Blocks

Treedump Trace Event

• Useful for determining current index structure

• Some earlier versions of Oracle can display a full
block dump of each leaf block

• Perfectly highlight indexes are “balanced” as the
number of levels to all leaf blocks is consistent

Richard Foote - Index Internals 10

SELECT object_id FROM dba_objects WHERE object_name = ‘index of interest’;

ALTER SESSION SET EVENTS ‘immediate trace name treedump level 12345’;

- where 12345 is the index object id

Example of Treedump

Richard Foote - Index Internals 11

----- begin tree dump
branch: 0x8405dde 138436062 (0: nrow: 3, level: 3)
branch: 0xdc11022 230756386 (-1: nrow: 219, level: 2)
branch: 0x8405f15 138436373 (-1: nrow: 138, level: 1)
leaf: 0x8405ddf 138436063 (-1: nrow: 21 rrow: 21)
leaf: 0x8405de0 138436064 (0: nrow: 18 rrow: 13)
leaf: 0x8405de2 138436066 (1: nrow: 15 rrow: 15)

block type (branch or leaf) and corresponding rdba,
position within previous level block (starting at –1 except root starting at 0)
nrows: number of all index entries (including deleted entries)
rrows: number of current index entries
level : branch block level (leaf block implicitly 0)

Note: Treedump trace file created in the USER_DUMP_DEST

Myth: Index becomes unbalanced

• Common perception that Oracle B-Tree Indexes
become unbalanced over time

• However, height between root block and all leaf
blocks is always consistent

• Treedump can highlight this

• Explored further in index block split discussion

Richard Foote - Index Internals 12

Block Dumps

• Oracle block dumps writes a formatted copy of a
block to a trace file

• Useful for investigating actual contents of a block

• It’s only a “representation” so it may not be
complete or totally accurate

• Is poorly documented so meaning of values can
be ambiguous or misleading

• Is not supported

Richard Foote - Index Internals 13

Where To Find Block Details

• DBA_SEGMENTS

– HEADER_FILE

– HEADER_BLOCK

• DBA_EXTENTS

– EXTENT_ID

– FILE_ID

– BLOCK_ID

Richard Foote - Index Internals 14

Both can be used to determine starting blocks of Index segments.
ASSM set to manual: Add 1 to BLOCK_ID to find Root Block
ASSM set to auto: Add 3 to BLOCK_ID to find Root Block (can vary)

Index Block Dump

Richard Foote - Index Internals 15

To create formatted dumps of blocks:

ALTER SYSTEM DUMP DATAFILE 5 BLOCK 58;
ALTER SYSTEM DUMP DATAFILE 5 BLOCK MIN 58 BLOCK MAX 60;

To determine the data file and block from a rba:

SELECT DBMS_UTILITY.DATA_BLOCK_ADDRESS_FILE(138436069),
DBMS_UTILITY.DATA_BLOCK_ADDRESS_BLOCK(138436069)
FROM dual;

Creates the dump file in user_background_dest

Block Header

Richard Foote - Index Internals 16

Start dump data blocks tsn: 5 file#: 5 minblk 58 maxblk 58
buffer tsn: 5 rdba: 0x0140003a (5/58)
scn: 0x0000.0008ec3c seq: 0x01 flg: 0x04 tail: 0xec3c0601
frmt: 0x02 chkval: 0xa39c type: 0x06=trans data
Hex dump of block: st=0, typ_found=1
Dump of memory from 0x084A0200 to 0x084A220
84A0200 0000A206 0140003A 0008EC3C 04010000 [....:.@.<.......]
84A0210 0000A39C 00000002 0000C846 0008EC39 [........F...9...]

...

rdba: relative database block address of the branch block (file no/block no)
scn : system change number of the block when last changed
seq: number of block changes within current scn
tail: consists of last 2 bytes of scn, type and seq,
frmt: block format (02 represents a post Oracle8 block format, A2 10g format)
chkval: checksum value
type: 06 – transactional data block type (table/index/cluster)
Hex dump of block: only displayed on later versions of Oracle

Block Header - Continued

Richard Foote - Index Internals 17

Block header dump: 0x0140003a
Object id on Block? Y
seg/obj: 0xc846 csc: 0x00.8ec39 itc: 1 flg: - typ: 2 - INDEX

fsl: 0 fnx: 0x0 ver: 0x01

Itl Xid Uba Flag Lck Scn/Fsc
0x01 0xffff.000.00000000 0x00000000.0000.00 C--- 0 scn 0x0000.0008ec39

seg/obj – object id
csc: commit/cleanout SCN
itc: interested transaction count (defaults 1 branch block, 2 leaf blocks)
typ – block type (2 – index)
Itl – Interested Transaction Location:

Itl: slot id,
Xid: transaction id,
Uba: undo block address,
Flag : state of current transaction (C – Committed)
Lck : number of locks help by current transaction
Scn/Fsc: scn /fsc of current transaction

Common Index Header Section

Richard Foote - Index Internals 18

header address 139067972=0x84a0244
kdxcolev 1
KDXCOLEV Flags = - - -
kdxcolok 0
kdxcoopc 0x80: opcode=0: iot flags=--- is converted=Y
kdxconco 2
kdxcosdc 0
kdxconro 6
kdxcofbo 40=0x28
kdxcofeo 7957=0x1f15
kdxcoavs 7917

kdxcolev: index level (0 represents leaf blocks)
kdxcolok: denotes whether structural block transaction is occurring
kdxcoopc: internal operation code
kdxconco: index column count
kdxcosdc: count of index structural changes involving block
kdxconro: number of index entries (does not include kdxbrlmc pointer)
kdxcofbo: offset to beginning of free space within block
kdxcofeo: offset to the end of free space (i.e.. first portion of block containing index data)
kdxcoavs: available space in block (effectively area between kdxcofbo and kdxcofeo)

Branch Header Section

Richard Foote - Index Internals 19

kdxbrlmc 20971579=0x140003b
kdxbrsno 0
kdxbrbksz 8060
kdxbr2urrc 13

kdxbrlmc: block address if index value is less than the first (row#0) value
kdxbrsno: last index entry to be modified
kdxbrbksz: size of usable block space

Leaf Header Section

Richard Foote - Index Internals 20

kdxlespl 0
kdxlende 0
kdxlenxt 20971580=0x140003c
kdxleprv 0=0x0
kdxledsz 0
kdxlebksz 8036

kdxlespl: bytes of uncommitted data at time of block split that have been cleaned out
kdxlende: number of deleted entries
kdxlenxt: pointer to the next leaf block in the index structure via corresponding rba
kdxleprv: pointer to the previous leaf block in the index structure via corresponding rba
Kdxledsz: fixed data size
kdxlebksz: usable block space (by default less than branch due to the additional ITL entry)

Branch Entries

Richard Foote - Index Internals 21

row#0[8052] dba: 20971772=0x14000fc
col 0; len 3; (3): c2 06 30
row#1[8044] dba: 20971773=0x14000fd
col 0; len 3; (3): c2 0b 51

Row number (starting at #0) followed by [starting location in block] followed by the dba

Column number (starting at 0) followed by column length followed by column value

Repeated for each indexed column

Repeated for each branch entry

Note: column value is abbreviated to smallest value that uniquely defines path

Leaf Entries (Unique)

Richard Foote - Index Internals 22

row#0[8025] flag: ------, lock: 0, len=11, data:(6): 01 40 00 7a 00 2d
col 0; len 2; (2): c1 03

Row number (starting at #0) followed by [starting location within block]
followed by various flags (deletion flag, locking information etc.) followed by
total length of index entry followed by the rowid

Index column number (starting at 0) followed by column length followed by
column value

Repeated for each indexed column

Repeated for each index entry

Note: Total overhead is 3 bytes for each leaf index entry (unique index)

Leaf Entries (Non-Unique)

Richard Foote - Index Internals 23

row#0[8019] flag: ------, lock: 0, len=17
col 0; len 7; (7): 41 43 43 45 53 53 24
col 1; len 6; (6): 01 40 00 0b 00 1d

Row number (starting at 0) followed by [starting location within block] followed by various
flags (deletion flag, etc locking information) followed by length of index entry

Index column number (starting at 0) followed by column length followed by column value

Repeated for each indexed column with last column in non-unique index being the rowid of
index entry (hence making the index entry effectively unique anyways)

Repeated for each index entry

Note: Total overhead is 4 bytes, 1 more than unique index

Why block dumps are useful

• Provide details of blocks for recovery purposes

• Assists in studying impact of a change

• Useful in troubleshooting problems

• Assists in determining how Oracle works

Richard Foote - Index Internals 24

Example: Delete index entry

Richard Foote - Index Internals 25

SQL> CREATE TABLE test_delete (id NUMBER, name VARCHAR2(10));
Table created.
SQL> CREATE INDEX test_delete_idx ON test_delete (name);
Index created.
SQL> INSERT INTO test_delete VALUES (1, 'BOWIE');
1 row created.
SQL> COMMIT;
Commit complete.
SQL> DELETE test_delete WHERE id = 1;
1 row updated.
SQL> SELECT file_id,block_id FROM dba_extents WHERE segment_name='TEST_DELETE_IDX';
FILE_ID BLOCK_ID
---------- ---------------

5 3441
SQL> ALTER SYSTEM DUMP DATAFILE 5 BLOCK 3442;
System altered.

Note: add 1 to BLOCK_ID else the segment header is dumped (Non-ASSM)

Delete Index Entry

Richard Foote - Index Internals 26

Itl Xid Uba Flag Lck Scn/Fsc
0x01 0x0000.000.00000000 0x00000000.0000.00 ---- 0 fsc 0x0000.00000000
0x02 0x0008.024.0000075b 0x00804e29.0078.0b ---- 1 fsc 0x0011.00000000

......
kdxlende 1
kdxlenxt 0=0x0
kdxleprv 0=0x0
kdxledsz 0
kdxlebksz 8036
row#0[8021] flag: ---D--, lock: 2, len=15
col 0; len 5; (5): 42 4f 57 49 45
col 1; len 6; (6): 01 40 10 0a 00 00

Itl slot number 2 shows that it has locked 1 row
kdxlende shows that 1 index row is being deleted
flag D shows that the index entry has been marked as deleted
lock:2 shows that the index entry has been locked by the transaction in Itl slot 2

Another Transaction Inserts Index Entry

Richard Foote - Index Internals 27

Meanwhile, in other session, another transaction comes along ...

SQL> INSERT INTO test_delete VALUES (2, ‘MAJOR TOM');
1 row created.

SQL> ALTER SYSTEM DUMP DATAFILE 5 BLOCK 3442;
System altered.

Index block dump of 2 transactions

Richard Foote - Index Internals 28

Itl Xid Uba Flag Lck Scn/Fsc
0x01 0x0000.000.00000000 0x00000000.0000.00 ---- 0 fsc 0x0000.00000000
0x02 0x0008.024.0000075b 0x00804e29.0078.0b ---- 1 fsc 0x0011.00000000
0x03 0x0009.01b.00000762 0x00804d49.006a.0b ---- 1 fsc 0x0000.00000000

.....
kdxconro 2
kdxcofbo 40=0x28
kdxcofeo 7978=0x1f2a
kdxcoavs 7938
kdxlespl 0
kdxlende 1
kdxlenxt 0=0x0
kdxleprv 0=0x0
kdxledsz 0
kdxlebksz 8012

Another Itl slot is created for the second transaction, the first slot reserved for recursive SQL
kdxconro count is increment to 2
kdxlebksz remaining space is decreased by the size of the new Itl slot and new index entry

Index block dump of 2 transactions

Richard Foote - Index Internals 29

row#0[7997] flag: ---D--, lock: 2, len=15
col 0; len 5; (5): 42 4f 57 49 45
col 1; len 6; (6): 01 40 10 0a 00 00
row#1[7978] flag: ------, lock: 3, len=19
col 0; len 9; (9): 4d 41 4a 4f 52 20 54 4f 4d
col 1; len 6; (6): 01 40 10 0a 00 01

The first index entry is still marked as deleted

New index entry allocated next index row number (#1)

Offset of new index entry is calculated as being 7997 (offset of first index entry) –
15 (length of first index entry) = 7978

New entry is locked by the transaction in ITL slot # 3

After the transactions commit

Richard Foote - Index Internals 30

Itl Xid Uba Flag Lck Scn/Fsc
0x01 0x0000.000.00000000 0x00000000.0000.00 ---- 0 fsc 0x0000.00000000
0x02 0x0008.024.0000075b 0x00804e29.0078.0b --U- 1 fsc 0x0011.0015a77c
0x03 0x0009.01b.00000762 0x00804d49.006a.0b --U- 1 fsc 0x0000.0015a76f

....
kdxlende 1
kdxlenxt 0=0x0
kdxleprv 0=0x0
kdxledsz 0
kdxlebksz 8012
row#0[7997] flag: ---D--, lock: 2, len=15
col 0; len 5; (5): 42 4f 57 49 45
col 1; len 6; (6): 01 40 10 0a 00 00
row#1[7978] flag: ------, lock: 3, len=19
col 0; len 9; (9): 4d 41 4a 4f 52 20 54 4f 4d
col 1; len 6; (6): 01 40 10 0a 00 01

Itl Flags are set to U (Committed, Unclean)
The deleted index entry still remains and it not cleaned up (yet ...)

Update Of Index Entry

Richard Foote - Index Internals 31

SQL> create table test_update (id number, name varchar2(10));
Table created.
SQL> create index test_update_idx on test_update (name);
Index created.
SQL> insert into test_update values (1, 'BOWIE');
1 row created.
SQL> commit;
Commit complete.
SQL> update test_update set name = 'ZIGGY' where id = 1;
1 row updated.
SQL> commit;
Commit complete.
SQL> select file_id, block_id from dba_extents where segment_name ='TEST_UPDATE_IDX';
FILE_ID BLOCK_ID
---------- ---------------

5 3441
SQL> alter system dump datafile 5 block 3442;
System altered.

Block Dump After Update

Richard Foote - Index Internals 32

kdxlespl 0
kdxlende 1
kdxlenxt 0=0x0
kdxleprv 0=0x0
kdxledsz 0
kdxlebksz 8036
row#0[8021] flag: ---D--, lock: 2, len=15
col 0; len 5; (5): 42 4f 57 49 45
col 1; len 6; (6): 01 40 0d 6a 00 00
row#1[8006] flag: ------, lock: 2, len=15
col 0; len 5; (5): 5a 49 47 47 59
col 1; len 6; (6): 01 40 0d 6a 00 00

kdxlende shows that one index entry has been deleted
Previous index entry remains but marked as deleted
A new index entry is inserted
Both entries locked by the update transaction in ITL #2

Basically, an UPDATE index operation consists of a DELETE and an INSERT

Index Statistics

• DBA_INDEXES

• INDEX_STATS

• INDEX_HISTOGRAMS

• V$SEGMENT_STATISTICS

Richard Foote - Index Internals 33

DBA_INDEXES Statistics
• Statistics columns populated by:

– DBMS_STATS package (preferred)
– ANALYZE command

• BLEVEL: Height of index between root block and leaf pages
(0 means there is only a root block)

• LEAF_BLOCKS: Number of leaf blocks in index
• DISTINCT_KEYS: Number of distinct index values
• AVG_LEAF_BLOCKS_PER_KEY: Average number of leaf

blocks required to store an indexed value.
• AVG_DATA_BLOCKS_PER_KEY: Average number of table

blocks that contain rows referenced by indexed key value
• NUM_ROWS: Number of leaf row entries
• CLUSTERING_FACTOR: Indicates how well ordered the rows

in the table are in relation to the index

Richard Foote - Index Internals 34

V$INDEX_STATS
• Populated by ANALYZE ... VALIDATE STRUCTURE command
• Only stores details of last index analyzed

• HEIGHT: Height of index, beginning at 1 for root only index
• BLOCKS: Number of blocks allocated to the index, not necessarily used
• LF_ROWS: Number of leaf row entries, including deleted row entries
• LF_BLKS: Number of leaf blocks, including empty leaf blocks
• LF_ROWS_LEN: Total size of all leaf row entries, including overhead

and deleted entries
• LF_BLK_LEN: Total usable space in all leaf blocks
• BR_ROWS: Number of branch row entries
• BR_BLKS: Number of branch blocks
• BR_ROWS_LEN: Total size of all branch row entries, including overhead
• BR_BLK_LEN: Total usable space in all branch blocks

Richard Foote - Index Internals 35

V$INDEX_STATS
• DEL_LF_ROWS: Number of deleted leaf row entries not yet cleaned out
• DEL_LF_ROWS_LEN: Total size of all deleted leaf row entries not yet

cleaned out
• DISTINCT_KEYS: Number of distinct index entries, including deleted entries
• MOST_REPEATED_KEY: The number of key entries for the most repeated

index value
• BTREE_SPACE: Total size of the entire index, including deleted entries
• USED_SPACE: Total space currently used (not free) within the index,

including deleted entries
• PCT_USED: Percentage of space currently used (not free) within the index,

including deleted entries
• ROWS_PER_KEY: Average number of leaf row entries per distinct key value
• BLKS_GETS_PER_ACCESS: Average number of block reads required to

access specific index entry (the fewer rows_per_key and the lower the CF,
the lower this value). EG: For a unique index with a HEIGHT of 3, this value
would be 4 (3 for the index block reads and one for the table block read).

Richard Foote - Index Internals 36

Statistic Notes

• BLEVEL (dba_indexes) vs. HEIGHT (index_stats)

• BLOCKS allocated, not necessarily yet used

• LF_ROWS_LEN inclusive of row overheads and rowid

• PCT_USED amount of space currently used within index

(USED_SPACE/BTREE_SPACE)*100.

Note: index wide average

• Most index stats are inclusive of deleted entries:

– non-deleted rows = LF_ROWS – DEL_LF_ROWS

– pct_used by non-deleted rows = ((USED_SPACE –
DEL_LF_ROWS_LEN) / BTREE_SPACE) * 100

Richard Foote - Index Internals 37

Clustering Factor

• Vital statistic used by CBO to determine cost of index access
• Determines the relative order of the table in relation to the index
• CF value corresponds to likely physical I/0s or blocks visited

during a full index scan (note same block could be visited many
times)

• If the same block is read consecutively then Oracle assumes only
the 1 physical I/0 is necessary

• The better the CF, the more efficient the access via the
corresponding index as less physical I/Os are likely

• “Good” CF generally has value closer to blocks in table
• “Bad” CF generally has a value closer to rows in table

Richard Foote - Index Internals 38

How does Oracle Calculate CF

• Performs a full index scan (or estimate thereof)

• Examines each rowid value to determine if
specific block referenced is the same block as
the previous rowid

• If it differs, the CF is incremented by 1

• At the end of the scan, the final tally becomes
the CF of the index

Richard Foote - Index Internals 39

Problems with this strategy

• One value determine CF for entire index when CF
may vary:
– For different parts of the table

– For different index values

• Doesn’t cater for index entries that were in a
“recently accessed” block
– E.g.. 100 rows could be spread across 2 blocks yet the

CF may be calculated as being 100

• Therefore CF can appear to be much worse than
reality and not really generate estimated PIOs

Richard Foote - Index Internals 40

Index with perfect CF

Richard Foote - Index Internals 41

Index

Table Blocks

Index with poor CF

Richard Foote - Index Internals 42

Index

Table Blocks

Index with good clustering but with
poor Clustering Factor

Richard Foote - Index Internals 43

Index

Table Blocks

Clustering Factor: How it can be
impacted

• Index clustering is improved when data is
inserted in the same order as index

• Therefore anything that impacts this ordering
can impact the clustering factor of an index

– Column order in index

– Reverse Indexes

– Freelists / Freelist Groups

– Automatic Segment Space Management

Richard Foote - Index Internals 44

Good Clustering Factor Example

Richard Foote - Index Internals 45

SQL> CREATE TABLE cf_test AS SELECT * FROM dba_tables ORDER BY table_name;

Table created.

SQL> CREATE INDEX cf_test_i ON cf_test(table_name);

Index created.

SQL> EXEC dbms_stats.gather_table_stats(ownname=>'BOWIE', tabname=>'CF_TEST‘,
estimate_percent=> null, cascade=> true, method_opt=>'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

SQL> SELECT t.table_name, i.index_name, t.blocks, t.num_rows, i.clustering_factor
2 FROM user_tables t, user_indexes i
3 WHERE t.table_name = i.table_name AND i.index_name='CF_TEST_I';

TABLE_NAME INDEX_NAME BLOCKS NUM_ROWS CLUSTERING_FACTOR
------------------ ------------------- ---------- ----------------- ----------------------------
CF_TEST CF_TEST_I 46 1705 46

“Average” Clustering Factor Example
• A table can only be well ordered in one way

• Therefore another index will likely not have as good a Clustering Factor

Richard Foote - Index Internals 46

SQL> CREATE INDEX cf_test_bad_i ON cf_test(num_rows);

Index created.

SQL> EXEC dbms_stats.gather_index_stats(ownname=>'BOWIE',indname=>'CF_TEST_BAD_I‘,
estimate_percent=> null);

PL/SQL procedure successfully completed.

SQL> SELECT t.table_name, i.index_name, t.blocks, t.num_rows, i.clustering_factor
2 FROM user_tables t, user_indexes i
3 WHERE t.table_name = i.table_name AND i.index_name='CF_TEST_BAD_I';

TABLE_NAME INDEX_NAME BLOCKS NUM_ROWS CLUSTERING_FACTOR
------------------ ------------------ ----------- ----------------- -----------------------------
CF_TEST CF_TEST_BAD_I 52 1705 432

CF – Column Order

• Clearly some columns will have a better CF
than other columns

• Therefore, with a concatenated index, it
makes sense that the index column order will
impact CF of index

• The CF of columns worthy of consideration
when determining index column ordering if all
columns are likely to be referenced

Richard Foote - Index Internals 47

CF – Column Order

Richard Foote - Index Internals 48

SQL> CREATE TABLE cf_test AS SELECT * FROM dba_tables ORDER BY table_name;

Table created.

SQL> CREATE INDEX cf_test_good_i ON cf_test(table_name, num_rows);

Index created.

SQL> EXEC dbms_stats.gather_table_stats(ownname=>'BOWIE', tabname=>'CF_TEST’,
estimate_percent=> null, cascade=> true, method_opt=>'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

SQL> SELECT t.table_name, i.index_name, t.blocks, t.num_rows, i.clustering_factor
2 FROM user_tables t, user_indexes i
3 WHERE t.table_name = i.table_name AND i.index_name='CF_TEST_GOOD_I';

TABLE_NAME INDEX_NAME BLOCKS NUM_ROWS CLUSTERING_FACTOR
------------------ ------------------- ---------- ----------------- ----------------------------
CF_TEST CF_TEST_GOOD_I 46 1705 46

CF – Column Order

Richard Foote - Index Internals 49

SQL> CREATE INDEX cf_test_bad_i ON cf_test(num_rows, table_name);

Index created.

SQL> EXEC dbms_stats.gather_table_stats(ownname=>'BOWIE', tabname=>'CF_TEST’,
estimate_percent=> null, cascade=> true, method_opt=>'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

SQL> SELECT t.table_name, i.index_name, t.blocks, t.num_rows, i.clustering_factor
2 FROM user_tables t, user_indexes i
3 WHERE t.table_name = i.table_name and i.index_name='CF_TEST_BAD_I‘;

TABLE_NAME INDEX_NAME BLOCKS NUM_ROWS CLUSTERING_FACTOR
------------------ ------------------- ---------- ----------------- ----------------------------
CF_TEST CF_TEST_BAD_I 46 1705 459

This index has a clearly worse Clustering Factor due to the average CF of the leading column

CF – Reverse Key Index

• Reverse key indexes are designed to redistribute
index values across the index structure

• They avoid contention issues, particularly in RAC
environments

• But what impact do they have on the Clustering
Factor of indexes ...

Richard Foote - Index Internals 50

CF – Reverse Key Index

Richard Foote - Index Internals 51

SQL> CREATE INDEX cf_test_reverse_i ON cf_test(table_name) REVERSE;

Index created.

SQL> EXEC dbms_stats.gather_table_stats(ownname=>'BOWIE', tabname=>'CF_TEST‘,
estimate_percent=> null, cascade=> true, method_opt=>'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

SQL> SELECT t.table_name, i.index_name, t.blocks, t.num_rows, i.clustering_factor
2 FROM user_tables t, user_indexes i
3 WHERE t.table_name = i.table_name AND i.index_name='CF_TEST_REVERSE_I';

TABLE_NAME INDEX_NAME BLOCKS NUM_ROWS CLUSTERING_FACTOR
------------------ ------------------- ----------- ----------------- -----------------------------
CF_TEST CF_REVERSE_TEST_I 46 1706 1303

The REVERSE index has taken an excellent Clustering Factor (52) and turned it into a
dreadful one (1303)

CF - Freelists / Freelist Groups

• Freelists and Freelist Groups are also purposely
designed to avoid block contention by
distributing different sessions to different blocks
during insert operations

• Will hopefully reduce contention related waits
such as buffer busy waits

• But what about the impact on the clustering
factor of indexes ...

Richard Foote - Index Internals 52

Impact on CF of Freelists

Richard Foote - Index Internals 53

SQL> CREATE TABLE cf_test1 (id NUMBER, insert_date DATE);

Table created.

SQL> CREATE SEQUENCE cf_test1_seq ORDER;

Sequence created.

SQL> CREATE OR REPLACE PROCEDURE cf_test1_proc AS
2 BEGIN
3 FOR i IN 1..100000 LOOP
4 INSERT INTO cf_test1 VALUES (cf_test1_seq.NEXTVAL, SYSDATE);
5 COMMIT;
6 END LOOP;
7 END;
8 /

In this example, create a simple procedure that inserts sequenced rows into a table with
segment space management set to manual

In (say) 3 separate sessions, exec cf_test1_proc concurrently

Impact on CF of Freelists

Richard Foote - Index Internals 54

SQL> CREATE INDEX cf_test1_i ON cf_test1(id);

Index created.

SQL> EXEC dbms_stats.gather_table_stats(ownname=>'BOWIE', tabname=>'CF_TEST1',
estimate_percent=> null, cascade=> true, method_opt=>'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

SQL> SELECT t.table_name, i.index_name, t.blocks, t.num_rows, i.clustering_factor
2 FROM user_tables t, user_indexes i
3 WHERE t.table_name = i.table_name AND i.index_name='CF_TEST1_I';

TABLE_NAME INDEX_NAME BLOCKS NUM_ROWS CLUSTERING_FACTOR
------------------- ------------------ ---------- ------------------ -----------------------------
CF_TESTS CF_TESTS_I 744 300000 875

Note the CF is pretty good with it being much closer to the BLOCKS value than NUM_ROWS.

Impact on CF of Freelists

Richard Foote - Index Internals 55

SQL> CREATE TABLE cf_test2 (id NUMBER, insert_date DATE) STORAGE (FREELISTS 11);

Table created.

SQL> CREATE SEQUENCE cf_test2_seq ORDER;

Sequence created.

SQL> CREATE OR REPLACE PROCEDURE cf_test2_proc AS
2 BEGIN
3 FOR i IN 1..100000 LOOP
4 INSERT INTO cf_test2 VALUES (cf_test2_seq.NEXTVAL, SYSDATE);
5 COMMIT;
6 END LOOP;
7 END;
8 /

Similar example as before but this time create table with freelists ...

Again, in (say) 3 separate sessions, exec cf_test2_proc

Impact on CF of Freelists

Richard Foote - Index Internals 56

SQL> CREATE INDEX cf_test2_i ON cf_test2(id);

Index created.

SQL> EXEC dbms_stats.gather_table_stats(ownname=>'BOWIE', tabname=>'CF_TEST2',
estimate_percent=> null, cascade=> true, method_opt=>'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

SQL> SELECT t.table_name, i.index_name, t.blocks, t.num_rows, i.clustering_factor
2 FROM user_tables t, user_indexes i
3 WHERE t.table_name = i.table_name AND i.index_name='CF_TEST2_I';

TABLE_NAME INDEX_NAME BLOCKS NUM_ROWS CLUSTERING_FACTOR
------------------- ------------------ ---------- ------------------ -----------------------------
CF_TEST2 CF_TEST2_I 749 300000 237402

Freelists avoided contention issues but now we are left with an index with a much worse CF.

Note: Actual CF value will vary depending on freelists and whether session Process IDs clash on
a freelist. Some versions of Oracle on some platforms don’t distribute well across freelists

CF – ASSM

• Automatic Segment Space Management
performs the same function as FREELISTS and
FREELIST GROUPS

• It helps prevent contention by spreading
insert load across different blocks

• Again, addresses contention issues but at
what cost to the Clustering Factor ...

Richard Foote - Index Internals 57

CF - ASSM

Richard Foote - Index Internals 58

SQL> CREATE TABLE cf_test3 (id NUMBER, insert_date DATE) TABLESPACE ASSM_TS;

Table created.

SQL> CREATE SEQUENCE cf_test3_seq ORDER;

Sequence created.

SQL> CREATE OR REPLACE PROCEDURE cf_test3_proc AS
2 BEGIN
3 FOR i IN 1..100000 LOOP
4 INSERT INTO cf_test3 VALUES (cf_test3_seq.NEXTVAL, SYSDATE);
5 COMMIT;
6 END LOOP;
7 END;
8 /

Same example as previous, except the table is created in an ASSM tablespace

CF - ASSM

Richard Foote - Index Internals 59

SQL> CREATE INDEX cf_test3_i ON cf_test3(id);

Index created.

SQL> EXEC dbms_stats.gather_table_stats(ownname=>'BOWIE', tabname=>'CF_TEST3',
estimate_percent=> null, cascade=> true, method_opt=>'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

SQL> SELECT t.table_name, i.index_name, t.blocks, t.num_rows, i.clustering_factor
2 FROM user_tables t, user_indexes i
3 WHERE t.table_name = i.table_name AND i.index_name='CF_TEST3_I';

TABLE_NAME INDEX_NAME BLOCKS NUM_ROWS CLUSTERING_FACTOR
------------------- ------------------ ---------- ------------------ -----------------------------
CF_TEST3 CF_TEST3_I 1000 300000 190469

ASSM may have avoided contention issues but now we are left with an index with a
much worse Clustering Factor and one that uses more Blocks in total

Myth: Rebuild Index With High CF

• Rebuilding index if CF is poor is common advice

• Unfortunately, as neither table nor index order
changes, the net effect is “disappointing”

• To improve the CF, it’s the table that must be rebuilt
(and reordered)

• If table has multiple indexes, careful consideration
needs to be given by which index to order table

• Pre-fetch index reads improves poor CF performance

• Rebuilding an index simply because it has a CF over a
certain threshold is futile and a silly myth

Richard Foote - Index Internals 60

Myth: Rebuild Index With High CF

• Simple experiment ...

• Pick any index with as “bad” a CF as can be found

• Analyze the index (with COMPUTE STATS)

• Rebuild the index

• Re-Analyze the index

• The Clustering Factor will always be unchanged ...

Richard Foote - Index Internals 61

Fix Clustering Factor

• Can reorder rows in table to match index

• But table can only have one order

• Therefore other indexes will still have poor or
worse CF

• If considering this option despite overheads,
choose the “lucky” index wisely

• OK, let’s fix the “average” Clustering Factor
from our earlier example ...

Richard Foote - Index Internals 62

Improve the Clustering Factor

Richard Foote - Index Internals 63

SQL> CREATE TABLE cf_reorder AS SELECT * FROM cf_test ORDER BY num_rows;

Table created.

SQL> CREATE INDEX cf_reorder_i ON cf_reorder(num_rows);

Index created.

SQL> EXEC dbms_stats.gather_table_stats(ownname=>'BOWIE', tabname=>'CF_REORDER',
estimate_percent=> null, cascade=> true, method_opt=>'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

SQL> SELECT t.table_name, i.index_name, t.blocks, t.num_rows, i.clustering_factor
FROM user_tables t, user_indexes i WHERE t.table_name = i.table_name AND
i.index_name = 'CF_REORDER_NUM_ROWS_I';

TABLE_NAME INDEX_NAME BLOCKS NUM_ROWS CLUSTERING_FACTOR
------------------- ------------------ ---------- ------------------ -----------------------------
CF_REORDER CF_REORDER_I 46 1528 44

The Clustering Factor has improved on the NUM_ROWS column from 432 to 44 !!

Fix CF on One Column But ...

Richard Foote - Index Internals 64

SQL> CREATE INDEX cf_reorder_tn_i ON cf_reorder(table_name);

Index created.

SQL> EXEC dbms_stats.gather_index_stats(ownname=>'BOWIE', indname=>
‘CF_REORDER_TB_I’, estimate_percent=> null);

PL/SQL procedure successfully completed.

SQL> SELECT t.table_name, i.index_name, t.blocks, t.num_rows, i.clustering_factor
FROM user_tables t, user_indexes i WHERE t.table_name = i.table_name AND
i.index_name = 'CF_REORDER_TN_I';

TABLE_NAME INDEX_NAME BLOCKS NUM_ROWS CLUSTERING_FACTOR
------------------- ------------------ ---------- ------------------ -----------------------------
CF_REORDER CF_REORDER_TN_I 46 1528 701

However, the Clustering Factor on the TABLE_NAME column has gone from 46 to 701 !!

VALIDATE STRUCTURE

• Many rebuild criteria make mention of
checking for deleted space

• This often on large indexes with a HEIGHT >
some value

• This of course requires the index to be
Analyzed with VALIDATE STRUCTURE

• However they often to don’t mention this
slight implication ...

Richard Foote - Index Internals 65

VALIDATE STRUCTURE

Richard Foote - Index Internals 66

SQL> ANALYZE INDEX really_large_index VALIDATE STRUCTURE;

... Wait a really long time, until eventually ...
Index analyzed.

Meanwhile, for the (say) two hours the above command takes to complete, other
sessions do this:

SQL> update table_with_really_large_index
2 set balance = 1000
3 where id = 12345;

... Wait until the VALIDATE STRUCTURE command completes ...

The fact the table is locked during the entire duration of the VALIDATE STRUCTURE
command has a somewhat significant impact on response times ...

Myth: Index Rebuilds Are Cheap and
Unobtrusive

• Most rebuild criteria require expensive generation of
statistics

• These statistics result in massive locking issues
• Index rebuilds generate massive amounts of redo

overheads
• Index (online) rebuilds require locks that potentially

severely impact performance (pre 11g)
• Performance can actually worsen after index rebuilds
• Index rebuilds can cause long running queries to fail

with ORA-123 errors

Richard Foote - Index Internals 67

PCTFREE

• When an index is created, Oracle reserves the
PCTFREE value as free space

• PCTFREE has a default of 10% resulting in 10% of
an index remaining free after creation

• Why ?

• To reduce and delay the occurrence of subsequent
index block splits

• If there’s insufficient free space in an index block
for a new index entry, a block split is performed

Richard Foote - Index Internals 68

Index block split internals

• Index blocks split in one of two different ways:

– 50-50 Block Split

– 90-10 Block Split (so-called)

• These splits can occur at the Root, Branch or
Leaf level

• The manner in which these occur can change
between Oracle releases

Richard Foote - Index Internals 69

Example of 50-50 Split

Richard Foote - Index Internals 70

1
2
3
4

1
2
3
4
5

Notes on 50-50 Block Split
An index block split is a relatively expensive operation:

1. Allocate new index block from index freelist
2. Redistribute block so the lower half (by volume) of index entries

remain in current block and move the other half into the new block
3. Insert the new index entry into appropriate leaf block
4. Update the previously full block such that its “next leaf block

pointer” (kdxlenxt) references the new block
5. Update the leaf block that was the right of the previously full block

such that its “previous leaf block pointer”(kdxleprv) also points to
the new block

6. Update the branch block that references the full block and add a
new entry to point to the new leaf block (effectively the lowest
value in the new leaf block)

Richard Foote - Index Internals 71

50-50 Branch Block Split

1. Allocate a new index block from the freelist

2. Redistribute the index entries in the branch block that
is currently full such that half of the branch entries
(the greater values) are placed in the new block

3. Insert the new branch entry into the appropriate
branch block

4. Update the branch block in the level above and add a
new entry to point to the new branch block

Richard Foote - Index Internals 72

Insert operation is even more expensive if corresponding
branch block is full:

50-50 Root Block Split
Root block is just a special case of a branch block:

1. Allocate two new blocks from the freelist

2. Redistributed the entries in the root block such that half the
entries are placed in one new block, the other half in the
other block

3. Update the root block such that it now references the two
new blocks

Richard Foote - Index Internals 73

Root block is always physically the same block
Root block split is the only time when the height of index increases
Therefore an index must always be balanced. Always !!
Suggestions that Oracle indexes become unbalanced are another
silly myth, made by those that don’t understand index block splits

Root Block Always The Same

Richard Foote - Index Internals 74

SQL> CREATE TABLE same_root (id NUMBER, name VARCHAR2(30));

Table created.

SQL> INSERT INTO same_root VALUES (1, 'The Thin White Duke');

1 row created.

SQL> COMMIT;

Commit complete.

SQL> CREATE INDEX same_root_i ON same_root(name);

Index created.

----- begin tree dump
leaf: 0x1402e22 20983330 (0: nrow: 1 rrow: 1)
----- end tree dump

Root Block Always The Same

Richard Foote - Index Internals 75

Add enough rows to cause the index structure grow and root
block to split….

----- begin tree dump
branch: 0x1402e22 20983330 (0: nrow: 2, level: 1)

leaf: 0x1402e23 20983331 (-1: nrow: 179 rrow: 179)
leaf: 0x1402e24 20983332 (0: nrow: 222 rrow: 222)

----- end tree dump

Note that the RBA of the root block remains the same

Keeping the root block as the same block ensures Oracle can
consistently access this block first when reading the index (and
not need to visit the segment header)

90-10 Block Split

• If the new insert index entry is the maximum
value, a 90-10 block split is performed

• Reduces wastage of space for index with
monotonically increasing values

• Rather than leaving behind ½ empty blocks,
full index blocks are generated

• I prefer to call them 99-1 block splits as 90-10
is misleading

Richard Foote - Index Internals 76

90-10 Block Split

Richard Foote - Index Internals 77

1
2
3
4

1
2
3
4
5

90-10 Splits With 9i

Richard Foote - Index Internals 78

Spot the difference: Example 1

SQL> CREATE TABLE split_90_a (id NUMBER, value VARCHAR2(10));
Table created.
SQL> CREATE INDEX split_90_a_idx ON split_90_a(id);
Index created.
SQL> BEGIN
2 FOR i IN 1..10000 LOOP
3 INSERT INTO split_90_a VALUES (i, 'Bowie');
4 END LOOP;
5 COMMIT;
6 END;
7 /
PL/SQL procedure successfully completed.
SQL> ANALYZE INDEX split_90_a_idx VALIDATE STRUCTUE;
Index analyzed.
SQL> SELECT lf_blks, pct_used FROM index_stats;
LF_BLKS PCT_USED
----------- -------------
19 94

90-10 Splits With 9i

Richard Foote - Index Internals 79

SQL> CREATE TABLE split_90_a (id NUMBER, value VARCHAR2(10));
Table created.
SQL> CREATE INDEX split_90_a_idx ON split_90_a(id);
Index created.
SQL> BEGIN
2 FOR i IN 1..10000 LOOP
3 INSERT INTO split_90_a VALUES (i, 'Bowie');
4 COMMIT;
5 END LOOP;
6 END;
7 /
PL/SQL procedure successfully completed.
SQL> ANALYZE INDEX split_90_a_idx VALIDATE STRUCTUE;
Index analyzed.
SQL> SELECT lf_blks, pct_used FROM index_stats;
LF_BLKS PCT_USED
----------- -------------
36 51

Indexes average space usage

• On average, indexes generally have the
following space usage patterns:

– Monotonically increasing – 100 %

– Random distribution index – 75%

• Depending on a number of factors, this
average may vary

• Although deletions is one of these factors, it’s
not generally as significant as many assume ...

Richard Foote - Index Internals 80

Myth: Deleted index space not reused

• A common misconception is that deleted space
(from either a delete or update operation) is
“deadwood” and can not be reused

• However, deleted space is generally cleaned out

• Deleted space is usually effectively reused

• Additionally, delete statistics from INDEX_STATS
doesn’t take into consideration deleted space
cleaned out

Richard Foote - Index Internals 81

Deleted Index Space

Richard Foote - Index Internals 82

Itl Xid Uba Flag Lck Scn/Fsc
0x01 0x0000.000.00000000 0x00000000.0000.00 ---- 0 fsc 0x0000.00000000
0x02 0x0008.024.0000075b 0x00804e29.0078.0b ---- 1 fsc 0x0011.00000000

......
kdxlende 1
kdxlenxt 0=0x0
kdxleprv 0=0x0
kdxledsz 0
kdxlebksz 8036
row#0[8021] flag: ---D--, lock: 2, len=15
col 0; len 5; (5): 42 4f 57 49 45
col 1; len 6; (6): 01 40 10 0a 00 00

When a delete (or update) is performed, Oracle marks the entry as deleted

Relevant portions of a block dump:

Note: del_lf_rows and del_lf_rows_len in index_stats provide deletion statistics

Deleted Space Reused ?

Richard Foote - Index Internals 83

SQL> CREATE TABLE del_stuff (id NUMBER, name VARCHAR2(30));

Table created.

SQL> CREATE INDEX del_stuff_i ON del_stuff(id);

Index created.

SQL> INSERT INTO del_stuff SELECT rownum, 'Bowie' FROM dual CONNECT BY level <=10;

10 rows created.

SQL> COMMIT;

Commit complete.

SQL> DELETE del_stuff WHERE id in (2,4,6,8);

4 rows deleted.

SQL> COMMIT;

Commit complete.

Create a simple table/index, populate it and delete a number of rows

Deleted Space Reused ?

Richard Foote - Index Internals 84

INDEX_STATS

LF_ROWS DEL_LF_ROWS DEL_LF_ROWS_LEN USED_SPACE
------------- ------------------- -------------------------- -----------------

10 4 56 140

Tree Dump

----- begin tree dump
leaf: 0x1402e3a 20983354 (0: nrow: 10 rrow: 6)
----- end tree dump

Block Dump (Highlights)

0x02 0x0009.008.00000b51 0x008036bb.0089.33 --U- 4 fsc 0x0038.0022ac94

kdxconro 10
kdxlende 4

row#1[7928] flag: ---D--, lock: 2, len=12
col 0; len 2; (2): c1 03
col 1; len 6; (6): 01 40 2e 32 00 01

Deleted Space Reused ?

Richard Foote - Index Internals 85

Insert a single new row, with an ID value of 100, that is both
different and not within the ranges of those values previously
deleted

SQL> INSERT INTO del_stuff VALUES (100, 'New Row');

1 row created.

SQL> COMMIT;

Commit complete.

What impact has this insert made on the index block ?

Deleted Space Reused ?

Richard Foote - Index Internals 86

INDEX_STATS

LF_ROWS DEL_LF_ROWS DEL_LF_ROWS_LEN USED_SPACE
------------- ------------------- -------------------------- -----------------

7 0 0 98

Tree Dump

----- begin tree dump
leaf: 0x1402e3a 20983354 (0: nrow: 7 rrow: 7)
----- end tree dump

Block Dump (Highlights)

0x02 0x0004.00e.0000085f 0x008010fe.0076.2a --U- 1 fsc 0x0000.0022b0e3

kdxconro 7
kdxlende 0

ALL DELETED INDEX ROWS ENTRIES HAVE BEEN CLEANED OUT !!

Deleted Index Space Is Reused

• The previous example clearly illustrates that any
insert to a leaf block removes all deleted entries

• In randomly inserted indexes, deleted space is
not an issue as it will eventually be reused

• But wait, there’s more …

Richard Foote - Index Internals 87

Delayed Block Cleanout

Richard Foote - Index Internals 88

Similar example as before:

Create a table/index, insert values (1,2,3,4,5,6,7,8,9,10) and commit
Then delete 4 rows, values (2,4,6,8) and before committing ...

10g

SQL> ALTER SYSTEM FLUSH BUFFER_CACHE;

System altered.

9i

SQL> ALTER SESSION SET EVENTS 'immediate trace name flush_cache';

Session altered.

Delayed Block Cleanout

Richard Foote - Index Internals 89

INDEX_STATS

LF_ROWS DEL_LF_ROWS DEL_LF_ROWS_LEN USED_SPACE
------------- ------------------- -------------------------- -----------------

6 0 0 84

Tree Dump

----- begin tree dump
leaf: 0x1402e4a 20983370 (0: nrow: 6 rrow: 6)
----- end tree dump

Block Dump (Highlights)

0x02 0x0009.006.00000b53 0x008036ce.0089.3e C--- 0 scn 0x0000.0022b47d

kdxconro 6
kdxlende 0

ALL DELETED INDEX ROWS ENTRIES HAVE BEEN CLEANED OUT !!

Delayed Block Cleanout

• Long running transactions may result in dirty
blocks being flushed from memory before a
commit

• When subsequently accessed, delayed block
cleanout is performed

• Delayed block cleanout results in all
corresponding deleted entries being cleaned out

• But wait, there’s still more ...

Richard Foote - Index Internals 90

Deleted Leaf Blocks – Reused ?

Richard Foote - Index Internals 91

Simple example to demonstrate if deleted leaf blocks are reused

SQL> CREATE TABLE test_empty_block (id NUMBER, name VARCHAR2(30));

Table created.

SQL> INSERT INTO test_empty_block SELECT rownum, 'BOWIE' FROM dual
CONNECT BY level <= 10000;

10000 rows created.

SQL> COMMIT;

SQL> CREATE INDEX test_empty_block_idx ON test_empty_block(id);

Index created.

Deleted Leaf Blocks – Reused ?

Richard Foote - Index Internals 92

SQL> DELETE test_empty_block WHERE id between 1 and 9990;

9990 rows deleted.

SQL> COMMIT;

Commit complete.

SQL> ANALYZE INDEX test_empty_block_idx VALIDATE STRUCTURE;

Index analyzed.

SQL> SELECT lf_blks, del_lf_rows FROM index_stats;

LF_BLKS DEL_LF_ROWS
----------- -------------------

21 9990

Therefore all blocks except (probably) the last block holding the last 10 values are
effectively empty.

Deleted Leaf Blocks – Reused ?

Richard Foote - Index Internals 93

Now reinsert a similar volume of data but after the last current value

SQL> INSERT INTO test_empty_block SELECT rownum+20000, 'ZIGGY' FROM dual
CONNECT BY level <= 10000;

10000 rows created.

SQL> COMMIT;

Commit complete.

SQL> ANALYZE INDEX test_empty_block_idx VALIDATE STRUCTURE;

Index analyzed.

SQL> SELECT lf_blks, del_lf_rows FROM index_stats;

LF_BLKS DEL_LF_ROWS
----------- -------------------

21 0

Note all empty blocks have been reused and all deleted rows cleaned out

Empty Blocks Not Unlinked

Richard Foote - Index Internals 94

Following select statement executed after the 9990 deletions in previous example ...

SQL> SELECT /*+ index (test_empty_block) */ * FROM test_empty_block
WHERE id BETWEEN 1 and 10000;

Execution Plan
--
SELECT STATEMENT

TABLE ACCESS BY INDEX ROWID| TEST_EMPTY_BLOCK
INDEX RANGE SCAN | TEST_EMPTY_BLOCK_IDX

Statistics
--

0 recursive calls
0 db block gets

25 consistent gets
0 physical reads
0 redo size

577 bytes sent via SQL*Net to client
396 bytes received via SQL*Net from client

2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)

10 rows processed

Deleted Space: Conclusions

• Deleted space most definitely is reused

– Deleted space cleaned out by subsequent changes to
index blocks

– Deleted space cleaned out by delayed block cleanouts

– Totally emptied blocks are placed on index freelist and
subsequently recycled (although they remain in the
index structure in the interim)

• Suggestions deleted space is “deadwood” and can’t
be reused is incorrect and yet another myth

Richard Foote - Index Internals 95

Index Fragmentation

• Bug with 90-10 split algorithm in 9i (as discussed)

• Too high PCTFREE

• Permanent table shrinkage

• Monotonically increasing index values and deletions

• Deletes or Updates that dramatically reduce occurrence
of specific index values

• Large volume of identical index entries

Richard Foote - Index Internals 96

Although deleted index space is generally reusable, there
can be wasted space:

Index Creation - PCTFREE
• When an index is created, Oracle reserves the PCTFREE

value as free space

• PCTFREE has a default value of 10% resulting in 10% of
an index remaining free after creation

• Why ?

• To reduce and delay the occurrence of (the relatively
expensive) index block splits

• If there isn’t sufficient space in an index block for the
new entry, a block split is performed

• Note: PCTFREE is only used during the creation or the
rebuilding of an index

Richard Foote - Index Internals 97

Too High PCTFREE

Richard Foote - Index Internals 98

SQL> CREATE INDEX bowie_idx ON bowie(id) PCTFREE 99;

Index created.

Free space

Used space

Too High PCTFREE

• When an index is created (or rebuilt), the
PCTFREE may be set too high

• Expected table growth doesn’t eventuate

• Index values monotonically increase

• Excessive free space remains unutilised

Richard Foote - Index Internals 99

Permanent Table Shrinkage

Richard Foote - Index Internals 100

....
Table Blocks

Free Space

Deleted Space

Used Index Space

Used Table Space

Permanent Table Shrinkage

• A table with many deletions without subsequent
inserts can potentially leave its indexes fragmented

• However, the table itself would also be badly
fragmented as well

• Therefore, the table itself may benefit from a rebuild
to improve FTS performance and CF of indexes

• Moving / rebuilding a table implicitly requires all its
indexes to be rebuilt as well

Richard Foote - Index Internals 101

Monotonically Increasing Values and
Deletions

Richard Foote - Index Internals 102

Free Space
Deleted Space

Used Space

Monotonically Increasing Values and
Deletions

• As previously discussed, fully deleted blocks
are recycled and are not generally problematic

• Therefore it’s sparse deletions with
monotonically increasing entries that can
cause fragmentation

• As all new index entries get inserted into the
“right most” leaf block, deleted entries within
leaf blocks with remaining index entries do not
get reused

Richard Foote - Index Internals 103

Deletes/Updates Reduce Index Value
Occurrence

Richard Foote - Index Internals 104

Free Space
Deleted Space

Used Space

Deletes/Updates Reduce Index Value
Occurrence

• Similar to previous example but a specific
range or set of values permanently deleted

• Again, sparse deletions only an issue as fully
deleted leaf blocks are recycled

• “Pockets” or portions within an index
structure may be permanently fragmented if
subsequent inserts do not reuse deleted space

Richard Foote - Index Internals 105

Large Volumes Of Identical Values

Richard Foote - Index Internals 106

Null – L1
AAA rowid3 – L2
AAA rowid5 – L3
BBB rowid9 – L4
BBB rowid11 – L5
BBB rowid13 – L6

AAA rowid1
AAA rowid2

AAA rowid3
AAA rowid4

AAA rowid5
AAA rowid6
BBB rowid7
BBB rowid8

BBB rowid9
BBB rowid10

BBB rowid11
BBB rowid12

BBB rowid13
BBB rowid14
CCC rowid15
CCC rowid16

Large Volumes Of Identical Values

• As previously discussed, all index entries are effectively unique
• Non-unique index entries add the rowid as part of the index key
• The rowid (for non-partitioned tables) basically consists of a File

No, Block No and Row Entry No
• For many tables, the File No either remains the same, increases

or toggles between files (in multi-file tablespaces)
• The Block No likewise typically increases as the table grows

within the corresponding File No (unless for example a
previously unallocated extent is reused)

• Therefore, generally speaking, the rowid typically increases as
the table increases or increases for a extents within a specific
datafile

Richard Foote - Index Internals 107

Large Volumes Of Identical Values

• The fact the rowid generally increases as new entries are added
means for a given index value, the index key becomes the
maximum key for the indexed value

• For example, a new value for AAA is most likely to be associated
with the maximum rowid of all existing AAA values

• Therefore Leaf Block 3 is the most likely leaf block to be
allocated for new AAA index values

• Multiple freelists/freelist groups and ASSM impact this
somewhat but generally not enough to alter this effect

• If there are enough values of AAA, Leaf Block 3 will eventually fill
and the split will leave behind a ½ empty leaf block of AAA
values

Richard Foote - Index Internals 108

Large Volumes Of Identical Values
There are a number of issues with this behaviour:

1. The likely leaf blocks to be inserted into are:

– L3 for values of AAA
– L6 for values of BBB or CCC
i.e. the last leaf blocks containing a specific value

2. All other leaf blocks are “isolated” in that they’re unlikely to be
considered by subsequent inserts (assuming only current values)

3. The isolated blocks are ½ empty due to 50-50 block splits

Net effect is the index becomes fragmented

Richard Foote - Index Internals 109

Note however large volumes of identical values are less likely to be
retrieved via an index so this fragmentation may not be of actual concern

Large Volumes Of Identical Values

Richard Foote - Index Internals 110

SQL> CREATE TABLE common_values (id NUMBER, common VARCHAR2(10));

Table created.

SQL> CREATE INDEX common_values_i ON common_values(common);

Index created.

SQL> INSERT INTO common_values VALUES (1, 'ZZZ');

1 row created.

SQL> COMMIT;

Commit complete.

Create a simple table and index and insert a row that will contain the maximum
index value to prevent potential 90-10 splits

Large Volumes Of Identical Values

Richard Foote - Index Internals 111

SQL> BEGIN
2 FOR i IN 1..90000 LOOP
3 CASE
4 WHEN mod(i,3) = 0 THEN INSERT INTO common_values VALUES (i, 'AAA');
5 WHEN mod(i,3) = 1 THEN INSERT INTO common_values VALUES (i, 'BBB');
6 WHEN mod(i,3) = 2 THEN INSERT INTO common_values VALUES (i, 'CCC');
7 END CASE;
8 END LOOP;
9 END;

10 /

SQL> ANALYZE INDEX common_values_i VALIDATE STRUCTURE;

Index analyzed.

SQL> SELECT BTREE_SPACE, USED_SPACE, PCT_USED FROM INDEX_STATS;

BTREE_SPACE USED_SPACE PCT_USED
------------------ ----------------- --------------

2648032 1355551 52

Populate table with a series of identical values ...

Index Rebuilds

Richard Foote - Index Internals 112

• As discussed, most indexes are efficient at
allocating and reusing space

• Randomly inserted indexes operate at average
25% free space

• Monotonically increasing indexes operate at close
to 0% free space

• Deleted space is generally reusable
• Only in specific scenarios could unused space be

expected to be higher and remain unusable
• So when may index rebuilds be necessary ?

Index Rebuilds

Richard Foote - Index Internals 113

An index rebuild should only be considered under the following general guideline:

“The benefits of rebuilding the index are greater than the overall costs of performing
such a rebuild”

Another way to look at this:

“If there are no measurable performance benefits of performing an index rebuild, why
bother ?”

Another important point:

“If after a rebuild, the index soon reverts back to it’s previous state, again why bother ?”

The basic problem with index rebuilds improving performance is that generally, the ratio of
index blocks visited to table blocks visited is relatively small. Best results are achieved when
the number of block visits to the table can be minimised, not so much the indexes.

Index vs. Table Block Visits

Richard Foote - Index Internals 114

Let’s first look at a theoretical example.

What would be the actual improvement in LIOs if an index were to ½ in size as a result
of an index rebuild (usually considered a very good outcome for an index rebuild)

Index structure before rebuild – PCT_USED only 50%:
Height = 3
Branch blocks = 50 (+ 1 branch block for the root)
Index Leaf blocks = 20,000

Index structure after rebuild – PCT_USED now 100%:
Height = 3
Branch blocks = 25 (+1 branch block for root)
Index Leaf Blocks = 10,000

Table structure:
Blocks = 100,000
Rows = 1,000,000 (average 10 rows per block)

Index vs. Table Block Visits

Richard Foote - Index Internals 115

Example 1 – Single row select on unique index

Cost before rebuild = 1 root + 1 branch + 1 leaf + 1 table = 4 LIOs
Cost after rebuild = 1 root + 1 branch + 1 leaf + 1 table = 4 LIOs

Net benefit = 0% Note Clustering Factor has no effect in this example

Example 2 – Range scan on 100 selected rows (0.01% selectivity)

Before Cost (worst CF) = 1 rt + 1 br + 0.0001*20000 (2 leaf) + 100 table = 104 LIOs
After Cost (worst CF) = 1 rt + 1 br + 0.0001*10000 (1 leaf) + 100 table = 103 LIOs

Net benefit = 1 LIO or 0.96%

Before Cost (best CF) = 1 rt + 1 br + 0.0001*20000 (2 leaf) + 0.0001*100000 (10 tb) = 14 LIOs
After Cost (best CF) = 1 rt + 1 br + 0.0001*10000 (1 leaf) + 10 table = 13 LIOs

Net benefit = 1 LIO or 7.14%

Index vs. Table Block Visits

Richard Foote - Index Internals 116

Example 3 – range scan on 10000 selected rows (1% selectivity)

Before cost (worst CF) = 1 rt + 1 br + 0.01*20000 (200 lf) + 10000 table = 10202 LIOs
After cost (worst CF) = 1 rt + 1 br + 0.01*10000 (100 lf) + 10000 table = 10102 LIOs

Net benefit = 100 LIOs or 0.98%

Before cost (best CF) = 1 rt + 1 br + 0.01*20000 (200 lf) + 0.01*100000 (1000 tb) = 1202 LIOs
After cost (best CF) = 1 rt + 1 br + 0.01*10000 (100 lf) + 1000 table = 1102 LIOs

Net benefit = 100 LIOs 8.32%

Example 4 – range scan on 100000 select rows (10% selectivity)

Before cost (worst CF) = 1 rt + 1 br + 0.1*20000 (2000 lf) + 100000 (tbl) = 102002 LIOs
After cost (worst CF) = 1 rt + 1 br + 0.1*10000 (1000 lf) + 100000 tbl = 101002 LIOs

Net benefit = 1000 LIOs or 0.98%

Before cost (best CF)= 1 rt + 1 br + 0.1*20000 (2000 lf) + 0.1*100000 (10000 tbl) = 12002 LIOs
After cost (best CF) = 1 rt + 1 br + 0.1*10000 (1000 lf) + 10000 tbl = 11002 LIOs

Net benefit = 1000 LIOs or 8.33%

Index vs. Table Block Visits

Richard Foote - Index Internals 117

Example 5 – Fast Full Index Scan (100% selectivity) assuming average 10 effective
multiblock reads. Note Clustering factor has no effect in this example.

Cost before rebuild = (1 root + 50 branch + 20000 leaf) / 10 = 2006 LIOs
Cost after rebuild = (1 root + 25 branch + 10000 leaf) / 10 = 1003 LIOs

Net benefit = 1003 LIOs or 50%

Index vs. Table Block Visit: Conclusions

• If an index accesses a ‘small’ % of rows, index fragmentation is unlikely
to be an issue

• As an index accesses a ‘larger’ % of rows, the number of Index LIOs
increases but the ratio of index reads to table reads remains constant

• Therefore caching characteristics of index becomes crucial as the size of
index and % of rows accessed increases

• The Clustering Factor of the index is an important variable in the
performance of an index and the possible effect of index fragmentation
as it impacts the ratio of index/table blocks accessed

• The greater the Clustering Factor, the greater the percentage of overall
LIOs associated with the index, therefore the greater the potential
impact of index fragmentation

• Index Fast Full Scans are likely to be most impacted by index
fragmentation as access costs are directly proportional to index size

Richard Foote - Index Internals 118

Index Rebuild – Case Study 1

• Non ASSM, 8K block size tablespace

• Index created with a “perfect” Clustering Factor

• Indexed columns represents just over 10% of
table columns

• Test impact of differing index fragmentation on
differing cardinality queries

Richard Foote - Index Internals 119

Index Rebuild – Case Study 1

Richard Foote - Index Internals 120

SQL> CREATE TABLE test_case1 (id NUMBER, pad CHAR(50), name1 CHAR(50), name2
2 CHAR(50), name3 CHAR(50), name4 CHAR(50), name5 CHAR(50), name6
3 CHAR(50), name7 CHAR(50), name8 CHAR(50), name9 CHAR(50));

Table created.

SQL> INSERT INTO test_case1 SELECT rownum,
12345678901234567890123456789012345678901234567890', 'DAVID BOWIE', 'ZIGGY STARDUST',
'MAJOR TOM', 'THIN WHITE DUKE’, 'ALADDIN SANE', 'DAVID JONES', ‘JOHN', ‘SALLY', ‘JACK'
FROM dual CONNECT BY LEVEL <=1000000;

1000000 rows created.

SQL> COMMIT;

Commit complete.

SQL> CREATE INDEX test_case1_idx ON test_case1(id, pad) PCTFREE 0;

Index created.

SQL> exec dbms_stats.gather_table_stats(ownname=>'BOWIE', tabname=>'TEST_CASE1',
cascade=> true, estimate_percent=>null, method_opt=> 'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

Index Rebuild – Case Study 1

Richard Foote - Index Internals 121

SQL> SELECT * FROM test_case1 WHERE id = 1000 ; -- select 1 row

SQL> SELECT * FROM test_case1 WHERE id BETWEEN 100 and 199; -- select 100 rows

SQL> SELECT * FROM test_case1 WHERE id BETWEEN 2000 and 2999; -- select 1,000 rows

SQL> SELECT * FROM test_case1 WHERE id BETWEEN 30000 and 39999; -- select 10,000 rows

SQL> SELECT * FROM test_case1 WHERE id BETWEEN 50000 and 99999; -- select 50,000 rows

SQL> SELECT * FROM test_case1 WHERE id BETWEEN 300000 and 399999 -- select 100,000
rows

SQL> SELECT /*+ index (test_case1) */ id FROM test_case1 WHERE id BETWEEN 1 and
1000000; -- select all 1,000,000 rows via a Full Index Scan

SQL> SELECT /*+ index_ffs(test_case1) */ id, pad FROM test_case1 WHERE id BETWEEN 1
and 1000000; -- select 1,000,000 rows via a Fast Full Index Scan

Note: Statements run several times to reduce parsing and caching differences
(although note that the first execution timings may be more relevant)

Index Rebuild – Case Study 1

Richard Foote - Index Internals 122

The table had a total of 1,000,000 rows in 76,870 blocks while the index had a Clustering
Factor of 76,869 (i.e. perfect).

Index recreated with differing PCTFREE values and tests rerun.

HEIGHT BR_BLKS LF_BLKS PCT_USED

0 PCTFREE 3 14 8,264 100

25 PCTFREE 3 18 11,110 75

50 PCTFREE 3 27 16,947 49

75 PCTFREE 3 55 35,715 24

Index Rebuild – Case Study 1

Richard Foote - Index Internals 123

Case Study 1 % of
Table

0 PCTFREE 25 PCFREE 50 PCTFREE 75 PCTFREE

1 Row 0.0001% 00:00.01 00:00.01 00:00.01 00:00.01

100 Rows 0.01% 00:00.01 00:00.01 00:00.01 00:00.01

1000 Rows 0.1% 00:00.01 00:00.01 00:00.01 00:00.01

10000 Rows 1% 00:00.03 00:00.03 0:00.03 00:00.03

50000 Rows 5% 00:10.05 00:12.06 00:17.00 00:18.06

100000 Rows 10% 00:22.06 00:23.08 00:27.09 00:33.06

1000000 Rows 100% 03:57.09 04:43.03 05:12.05 05:29.08

1000000 Rows (FTS) 100% 00:18.06 00:19.02 00:24.01 00:36.06

Case Study 1: Comments

• All indexes resulted in identical executions plans
• No difference with statements that access < 10,000 rows
• Differences emerge between 10000 and 50000 due to

caching restrictions (25,000 approximate point of some
differences)

• 50000 rows marks point where index hint required to force
use of hint, therefore index issues somewhat redundant

• General exception Index Fast Full Scan where performance
is most effected and directly proportional is index size

• Summary: queries up to 25,000 rows (2.5%) little to no
difference, 25,000 – 50,000 some differences emerged,
50,000+ index not used anyway

Richard Foote - Index Internals 124

Index Rebuild – Case Study 2

• Similar to case 1 but importantly with a much
worse Clustering Factor

• Also size of index designed to increase index
height when poorly fragmented

• Non-Unique values results in less efficient
branch entries management as second pad
column required

Richard Foote - Index Internals 125

Index Rebuild – Case Study 2

Richard Foote - Index Internals 126

begin
insert into test_case2 values (0, '**', 'David Bowie', …);
for a in 1..100 loop
insert into test_case2 values (1, '**', 'David Bowie', …);
for b in 1..10 loop
insert into test_case2 values (2, '**', 'David Bowie', …);
for c in 1..10 loop
insert into test_case2 values (3, '**', 'David Bowie', …);
for d in 1..5 loop
insert into test_case2 values (4, '**', 'David Bowie', …);
for d in 1..2 loop
insert into test_case2 values (5, '**', 'David Bowie', …);
for e in 1..10 loop
insert into test_case2 values (6, '**', 'David Bowie', …);
end loop;

end loop;
end loop;

end loop;
end loop;

end loop;
commit;
end;
/

Index Rebuild – Case Study 2

Richard Foote - Index Internals 127

SQL> SELECT * FROM test_case2 WHERE id = 0; -- 1 row

SQL> SELECT * FROM test_case2 WHERE id = 1; -- 100 rows

SQL> SELECT * FROM test_case2 WHERE id = 2; -- 1,000 rows

SQL> SELECT * FROM test_case2 WHERE id = 3; -- 10,000 rows

SQL> SELECT /*+ index (test_case2) */ * FROM test_case2 WHERE id = 4; -- 50,000 rows

SQL> SELECT /*+ index (test_case2) */ * FROM test_case2 WHERE id = 5; -- 100,000 rows

SQL> SELECT /*+ index (test_case2) */ * FROM test_case2 WHERE id = 6; -- 1,000,000 rows

SQL> SELECT /*+ ffs_index (test_case2) */ id, pad FROM test_case2 WHERE id = 6; --
1,000,000 rows via a Fast Full Index Scan

Index Rebuild – Case Study 2

Richard Foote - Index Internals 128

The table had a total of 1,161,101 rows in 82,938 blocks while the index had a clustering
factor of 226,965 (i.e. considerably worse than case 1).

Index recreated with differing PCTFREE values and tests rerun.

HEIGHT BR_BLKS LF_BLKS PCT_USED

0 PCTFREE 3 79 9,440 100

25 PCTFREE 3 107 12,760 75

50 PCTFREE 4 163 19,352 49

75 PCTFREE 4 346 41,468 24

Index Rebuild – Case Study 2

Richard Foote - Index Internals 129

Case Study 1 % of Table 0 PCTFREE 25 PCFREE 50 PCTFREE 75 PCTFREE

1 Row 0.000086% 00:00.01 00:00.01 00:00.01 00:00.01

100 Rows 0.0086% 00:00.01 00:00.01 00:00.01 00:00.01

1000 Rows 0.086% 00:00.01 00:00.01 00:00.01 00:00.01

10000 Rows 0.86% 00:27.02 00:27.06 00:29.03 00:35.03

50000 Rows 4.31% 00:41.00 00:42.03 00:53.07 01:03.04

100000 Rows 8.61% 00:52.03 01:01.04 01:20.08 02:08.02

1000000 Rows 86.12% 04:01.07 04:57.02 05:54.00 06:12.02

1000000 Rows (FTS) 86.12% 00:18.01 00:21.09 00:23.07 00:36.05

Index Rebuild – Case Study 2

• Index is clearly less efficient and generates slower
execution times for statements > 1,000 rows

• All indexes resulted in identical executions plans
• No difference with statements that access < 1,000 rows
• Differences emerge with >= 10,000 rows although only

significantly so for PCTFREE >= 50%
• Because of the poorer CF, 10,000 rows marks the boundary

where index is automatically used by the CBO
• Again, Fast Full Index Scan performance directly

proportional to index size
• Summary: index only an issue for a very narrow cases with

between 10,000 – 50,000 rows and 50%+ PCTFREE

Richard Foote - Index Internals 130

Index Selectivity “Zones”
• Green Zone: Index fragmentation makes no difference

because of low LIOs and high caching characteristics
making index rebuilds pointless. Most OLTP queries
belong here.

• Orange Zone: Selectivity generates significant index
I/Os and index caching is reduced. Likelihood increases
closer to index appropriateness boundary. If ratio of
index/table reads impacted, some performance
degradation possible.

• Red Zone: Selectivity so high that index rarely used by
CBO, therefore index fragmentation generally not an
issue. Exception Index Fast Full Scan execution plans.

Richard Foote - Index Internals 131

Note: Actual timings from both test cases can vary significantly due to differences in database
environments (e.g. Memory, CPUs, Disk Speed, caching characteristics, etc.) however index
selectively zones still applicable.

Simple Min Example

Richard Foote - Index Internals 132

However, there are always exceptions to most rules ...

SQL> CREATE TABLE ziggy (id NUMBER, value VARCHAR2(30)) ;
Table created.

SQL> INSERT INTO ziggy SELECT rownum, 'BOWIE' FROM dual CONNECT BY level <=1000000;
1000000 rows created.

SQL> commit;
Commit complete.

SQL> CREATE INDEX ziggy_id_idx ON ziggy(id);
Index created.

SQL> DELETE ziggy WHERE id <=500000;
500000 rows deleted.

SQL> COMMIT;
Commit complete.

SQL> exec dbms_stats.gather_table_stats(ownname=>'BOWIE', tabname=>'ZIGGY',
estimate_percent=> null, cascade=> true, method_opt=>'FOR ALL COLUMNS SIZE 1');
PL/SQL procedure successfully completed.

Simple Min Example

Richard Foote - Index Internals 133

SQL> SELECT MIN(id) FROM ziggy;

MIN(ID)

500001

Id | Operation | Name | Rows | Bytes |
0 | SELECT STATEMENT | | 1 | 5 |
1 | SORT AGGREGATE | | 1 | 5 |
2 | INDEX FULL SCAN (MIN/MAX) | ZIGGY_ID_IDX | 500K | 2441K |

Statistics
0 recursive calls
0 db block gets

1115 consistent gets
0 physical reads
0 redo size

412 bytes sent via SQL*Net to client
396 bytes received via SQL*Net from client

2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
1 rows processed

Simple Min Example
• Classic problem with MIN operations
• Oracle navigates down the left most branch to find the

MIN value
• However, left most leaf nodes are empty due to delete

operation but have not yet been reused
• As previously discussed, they remain within index

structure
• Query must navigate across all empty left nodes until it

finds the first non-deleted value
• Rebuild (or Coalesce or Shrink) will fix this problem

Richard Foote - Index Internals 134

SQL> ALTER INDEX ziggy_id_idx REBUILD ONLINE;

Index altered.

Simple Min Example

Richard Foote - Index Internals 135

SQL> SELECT MIN(id) FROM ziggy;

MIN(ID)

500001

Id | Operation | Name | Rows | Bytes |
0 | SELECT STATEMENT | | 1 | 5 |
1 | SORT AGGREGATE | | 1 | 5 |
2 | INDEX FULL SCAN (MIN/MAX) | ZIGGY_ID_IDX | 500K | 2441K |

Statistics
0 recursive calls
0 db block gets
3 consistent gets
0 physical reads
0 redo size

412 bytes sent via SQL*Net to client
396 bytes received via SQL*Net from client

2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
1 rows processed

High Selectivity: Which Indexes?

Richard Foote - Index Internals 136

With selectivity crucial, how to find candidate indexes ?

Oracle9i and above, the V$SQL_PLAN view provides useful info:

SQL> SELECT hash_value, object_name, cardinality, operation, options
2 FROM v$sql_plan
3 WHERE operation = 'INDEX' AND object_owner = 'BOWIE' AND cardinality > 10000
4 ORDER BY cardinality DESC;

HASH_VALUE OBJECT_NAME CARDINALITY OPERATION OPTIONS
------------------ ---------------------- ------------------ --------------- ---------------------

408900036 TEST_CASE1_IDX 1002416 INDEX FAST FULL SCAN

2480490001 TEST_CASE1_IDX 1000213 INDEX RANGE SCAN

2438084300 TEST_CASE1_IDX 1000000 INDEX FULL SCAN

Note: SQL efficiency always of paramount importance !!

Index Rebuild: Impact on Inserts

Richard Foote - Index Internals 137

Impact of index rebuilds on subsequent inserts needs to be considered ...

Simple demo with index rebuilt with PCTFREE = 0:

SQL> CREATE TABLE test_insert (id NUMBER, value VARCHAR2(10));

Table created.

SQL> INSERT INTO test_insert SELECT rownum, 'BOWIE' FROM dual
CONNECT BY level <= 500000;

500000 rows created.

SQL> COMMIT;

Commit complete.

SQL> CREATE INDEX test_insert_idx ON test_insert(id) PCTFREE 0;

Index created.

Index Rebuild: Impact on Inserts

Richard Foote - Index Internals 138

Now insert 10% of rows evenly across the index ...

SQL> INSERT INTO test_insert SELECT rownum*10, 'BOWIE' FROM dual
CONNECT BY level <= 50000;

50000 rows created.

Elapsed: 00:00:03.95

SQL> COMMIT;

Commit complete.

SQL> ANALYZE INDEX test_insert_idx VALIDATE STRUCTURE;

Index analyzed.

SQL> SELECT pct_used FROM index_stats;

PCT_USED

55

So by adding approximately 10% of random data, the PCT_USED has plummeted to only
55%. It kind of makes the index rebuild a little pointless !!

Index Rebuild: Impact on Inserts

Richard Foote - Index Internals 139

Repeat same test but with an index rebuilt with PCTFREE = 10

SQL> CREATE INDEX test_insert_idx ON test_insert(id) PCTFREE 10;

Index created.

SQL> INSERT INTO test_insert SELECT rownum*10, 'BOWIE' FROM dual
CONNECT BY level <= 50000;

50000 rows created.

Elapsed: 00:00:00.49 => Significantly faster than inserting into the PCTFREE 0 index

SQL> COMMIT;

Commit complete.

SQL> ANALYZE INDEX test_insert_idx VALIDATE STRUCTURE;

Index analyzed.

SQL> SELECT pct_used FROM index_stats;

PCT_USED

99 => Significantly greater than inserting into the PCTFREE 0 index

Index Rebuild – Inserts Conclusion

• Be very careful of PCTFREE value with rebuilds

• Ensure there is sufficient free space to avoid
imminent block splits

• Block splits can impact subsequent insert
performance

• Block splits can lead to large amounts of
unused space making the rebuild pointless

Richard Foote - Index Internals 140

Myth: Index Height Rebuild Criteria

• Large indexes are simply large and may reach height ‘x’
• Most index rebuilds do not result in a height reduction
• Therefore if an index remains the same height after a rebuild, the index

still meets rebuild criteria, so rebuild again and again and again ...
• If the PCT_USED is high, rebuild is pointless
• If index creeps over height boundary, rebuild is still likely pointless as:

– Additional overhead is generally a single logical I/O
– Index eventually will grow anyways
– May not result in reduction of leaf blocks to noticeably improve

performance

• Any rebuild criteria which potentially remains unaltered after rebuild
must be definition be inaccurate

• Rebuilding an index purely because of its height is yet another myth

Richard Foote - Index Internals 141

“Shape” Of B-Tree Index as Often Depicted

Richard Foote - Index Internals 142

A reduction in height “looks” like it might be significant and hugely beneficial ...

Actual “Shape” Of Most B-Tree Indexes

Richard Foote - Index Internals 143

The benefits of reducing an index height (when indeed it does reduce after a rebuild)
are often exaggerated.

The net benefit of “just” an index height reduction is a LIO due to extra branch level.

An index at level 3 just spawning to a 4th level would generally need to approximately
double in size for it have more than 2 branch blocks at the new level.

As discussed, unless the number of leaf blocks also dramatically decreases and is
accessed by high cardinality queries, net performance benefit is likely to be minimal.

Therefore index height is both irrelevant and redundant when determining rebuild
criteria as:

• Generally height remains the same after a rebuild
• Index fragmentation although rare, could be an issue regardless of index height

Myth: Index Height Rebuild Criteria

Richard Foote - Index Internals 144

SQL> ANALYZE INDEX large_table_i VALIDATE STRUCTURE;

Index analyzed.

SQL> SELECT height, lf_blks, br_blks, pct_used FROM index_stats;

HEIGHT LF_BLKS BR_BLKS PCT_USED
---------- ----------- ------------ --------------

4 18004 440 61

SQL> ALTER INDEX large_table_i REBUILD ONLINE;

Index altered.

SQL> ANALYZE INDEX large_table_i VALIDATE STRUCTURE;

Index analyzed.

HEIGHT LF_BLKS BR_BLKS PCT_USED
---------- ----------- ------------ --------------

4 12364 162 90

Although LF_BLKS, BR_BLKS and PCT_USED have improved significantly in this example,
the Height hasn't changed. This means the index is eligible for yet another index rebuild
immediately even though it's only just been rebuilt ...

Conditions For Rebuilds
• Large free space (generally 50%+), which indexes rarely reach, and
• Large selectivity, which most index accesses never reach, and
• Response times are adversely affected, which rarely are.

• Note requirement of some free space anyways to avoid insert and
subsequent free space issues

• Benefit of rebuild based on various dependencies which include:

– Size of index
– Clustering Factor
– Caching characteristics
– Frequency of index accesses
– Selectivity (cardinality) of index accesses
– Range of selectivity (random or specific range)
– Efficiency of dependent SQL
– Fragmentation characteristics (does it effect portion of index frequently used)
– I/O characteristics of index (serve contention or I/O bottlenecks)
– The list goes on and on ….

Richard Foote - Index Internals 145

Other Rebuild Issues To Consider

• More efficient index structures can reduce stress
on buffer cache. Harder to formulate but requires
consideration

• If storage is super critical then storage savings
may be worthy of consideration

• If you have the resources and you have the
appropriate maintenance window, then the cost
vs. benefit equation more favourable to rebuild
– Benefit maybe low but perhaps so is the relative cost

• Rebuild or Coalesce or Shrink ?

Richard Foote - Index Internals 146

Index Coalesce

• Generally more efficient, less resource intensive, less
locking issues than rebuild option

• Can significantly reduce number of leaf blocks in some
scenarios

• Requires sum of free space to exceed 50% + PCTFREE in
consecutive leaf blocks

• However, generally need excessive 50%+ free space for
rebuild to be effective

• Does not reduce index height
• Can be more expensive than rebuild if it needs to

Coalesce too high a percentage of all leaf nodes

Richard Foote - Index Internals 147

Index Coalesce

Richard Foote - Index Internals 148

1 2 3 4 5 6 7 8 9

Before Coalesce

Index Coalesce

Richard Foote - Index Internals 149

1, 2, 3 4 5 6, 7 8, 9

After Coalesce

Rebuild vs. Coalesce Comparison

Richard Foote - Index Internals 150

SQL> CREATE TABLE ziggy (id NUMBER, value VARCHAR2(30));
Table created.

SQL> INSERT INTO ziggy SELECT rownum, 'BOWIE' FROM dual CONNECT BY level <=1000000;
1000000 rows created.

SQL> COMMIT;
Commit complete.

SQL> CREATE INDEX ziggy_id_idx ON ziggy(id) PCTFREE 10;
Index created.

SQL> DELETE ziggy WHERE MOD(id,10) <> 0;
900000 rows deleted.

SQL> COMMIT;
Commit complete.

First, create a table that has high fragmentation throughout the whole index structure.

Rebuild vs. Coalesce Comparison

Richard Foote - Index Internals 151

SQL> ANALYZE INDEX ziggy_id_idx VALIDATE STRUCTURE;
Index analyzed.

SQL> SELECT height, lf_blks, br_blks, pct_used FROM index_stats;

HEIGHT LF_BLKS BR_BLKS PCT_USED
---------- ----------- ------------ --------------

3 2226 5 10

SQL> SELECT n.name, s.value FROM v$mystat s, v$statname n
2 WHERE s.statistic# = n.statistic# AND n.name = 'redo size';

NAME VALUE
-- ---------------
redo size 445690624

SQL> ALTER INDEX ziggy_id_idx REBUILD;

Index altered.

Rebuild vs. Coalesce Comparison

Richard Foote - Index Internals 152

SQL> SELECT n.name, s.value FROM v$mystat s, v$statname n
2 WHERE s.statistic# = n.statistic# AND n.name = 'redo size';

NAME VALUE
-- ---------------
redo size 447695952 (Difference 2,005,328)

SQL> ANALYZE INDEX ziggy_id_idx VALIDATE STRUCTURE;
Index analyzed.

SQL> SELECT height, lf_blks, br_blks, pct_used FROM index_stats;

HEIGHT LF_BLKS BR_BLKS PCT_USED
---------- ------------ ------------- --------------

2 222 1 90

Note Height has decreased in this example by rebuilding the index

Rebuild vs. Coalesce Comparison

Richard Foote - Index Internals 153

Repeat exactly the same test but this time COALESCE the index rather than rebuild it.

SQL> SELECT n.name, s.value FROM v$mystat s, v$statname n
2 WHERE s.statistic# = n.statistic# AND n.name = 'redo size';

NAME VALUE
-- ---------------
redo size 893392588

SQL> ALTER INDEX ziggy_id_idx COALESCE;
Index altered.

SQL> SELECT n.name, s.value FROM v$mystat s, v$statname n
2 WHERE s.statistic# = n.statistic# AND n.name = 'redo size';

NAME VALUE
-- ---------------
redo size 942287332 (Difference 48,894,744)

The redo generated by the Coalesce operation is vastly more than that of the rebuild.

Rebuild vs. Coalesce Comparison

Richard Foote - Index Internals 154

SQL> ANALYZE INDEX ziggy_id_idx VALIDATE STRUCTURE;

Index analyzed.

SQL> SELECT height, lf_blks, br_blks, pct_used FROM index_stats;

HEIGHT LF_BLKS BR_BLKS PCT_USED
---------- ------------ ------------- --------------

3 223 5 88

Note the Index Height and number of Branch Blocks remained the same.

The Rebuild was a better option here as the entire index structure was fundamentally
fragmented and benefited from the index rebuild operation. The final index was relatively
small however coalesce had to keep reconstructing each leaf block from an average of 9
original leaf blocks.

However, what if only a portion of an index structure is fragmented while the rest is
reasonably compact. This scenario is typical of applications that focus delete operations
primarily on “oldest” part of table data.

Rebuild vs. Coalesce Comparison

Richard Foote - Index Internals 155

SQL> CREATE TABLE ziggy (id NUMBER, value VARCHAR2(30));
Table created.

SQL> INSERT INTO ziggy SELECT rownum, 'BOWIE' FROM dual CONNECT BY level <=1000000;
1000000 rows created.

SQL> COMMIT;
Commit complete.

SQL> CREATE INDEX ziggy_id_idx ON ziggy(id) PCTFREE 10;
Index created.

SQL> DELETE ziggy WHERE MOD(id,10) <> 0 and id <= 100000;
90000 rows deleted.

SQL> COMMIT;
Commit complete.

Similar demo to previous except we only delete data from the “oldest” 10% of table data

Rebuild vs. Coalesce Comparison

Richard Foote - Index Internals 156

SQL> ANALYZE INDEX ziggy_id_idx VALIDATE STRUCTURE;
Index analyzed.

SQL> SELECT height, lf_blks, br_blks, pct_used FROM index_stats;

HEIGHT LF_BLKS BR_BLKS PCT_USED
---------- ----------- ------------ --------------

3 2226 5 90

SQL> SELECT n.name, s.value FROM v$mystat s, v$statname n
2 WHERE s.statistic# = n.statistic# AND n.name = 'redo size';

NAME VALUE
-- -----------------
redo size 1006743124

SQL> ALTER INDEX ziggy_id_idx REBUILD;

Index altered.

Rebuild vs. Coalesce Comparison

Richard Foote - Index Internals 157

SQL> SELECT n.name, s.value FROM v$mystat s, v$statname n
2 WHERE s.statistic# = n.statistic# AND n.name = 'redo size';

NAME VALUE
-- ----------------
redo size 1023495900 (Difference 16,752,776)

SQL> ANALYZE INDEX ziggy_id_idx VALIDATE STRUCTURE;
Index analyzed.

SQL> SELECT height, lf_blks, br_blks, pct_used FROM index_stats;

HEIGHT LF_BLKS BR_BLKS PCT_USED
---------- ------------ ------------- --------------

3 2027 5 90

Note the redo for this rebuild operation is significantly greater than the first rebuild as
the index remains significantly larger

Rebuild vs. Coalesce Comparison

Richard Foote - Index Internals 158

Repeat exactly the same test but this time COALESCE the index rather than rebuild it.

SQL> SELECT n.name, s.value FROM v$mystat s, v$statname n
2 WHERE s.statistic# = n.statistic# AND n.name = 'redo size';

NAME VALUE
-- ----------------
redo size 1533650408

SQL> ALTER INDEX ziggy_id_idx COALESCE;
Index altered.

SQL> SELECT n.name, s.value FROM v$mystat s, v$statname n
2 WHERE s.statistic# = n.statistic# AND n.name = 'redo size';

NAME VALUE
-- ----------------
redo size 1538517804 (Difference 4,867,396)

The redo generated by the Coalesce operation is now only 1/10 of what it was in
the first test and 1/4 that of the rebuild. This is due to the fact the rebuild operation
had to rebuild large portions (90%) of the index structure that didn’t actually need
rebuilding while the coalesce only had to process 10% of the index.

Rebuild vs. Coalesce Comparison

• Coalesce is most effective when approximately 25%
or less of an index has less than 50% of used space

• If used space is generally greater than 50%, Coalesce
will be ineffective

• If more than approximately 25% of an index has
significant fragmentation issues, a rebuild is less
costly and more effective

• However, locking issues need to be considered (pre
11g)

Richard Foote - Index Internals 159

Rebuild vs. Coalesce Locks

Richard Foote - Index Internals 160

A REBUILD ONLINE operation still requires a table lock at the start and end of the
rebuilding process (prior to 11g where these locks are no longer required)

A COALESCE operation is always online and requires no table locks

SQL> CREATE TABLE ziggy (id NUMBER, value VARCHAR2(30)) TABLESPACE USERS;
Table created.

SQL> INSERT INTO ziggy SELECT rownum, 'BOWIE' FROM dual CONNECT BY level <=1000000;
1000000 rows created.

SQL> commit;
Commit complete.

SQL> CREATE INDEX ziggy_id_idx ON ziggy(id) PCTFREE 10;
Index created.

SQL> INSERT INTO ziggy SELECT 1000001, 'BOWIE' FROM dual;
1 row created.

--- Do not commit;

Rebuild vs. Coalesce Locks

Richard Foote - Index Internals 161

In another session, attempt the REBUILD ONLINE ...

and the session just hangs until the other session commits, potentitally causing
performance issues as locks begin to queue up ...

Whereas a COALESCE of an index in another session would complete successfully with no
locking issues

SQL> ALTER INDEX ziggy_id_idx REBUILD ONLINE;

SQL> ALTER INDEX ziggy_id_idx COALESCE;

Index altered.

Shrink Indexes

• 10g introduced the option to SHRINK indexes

• Index must be in a Automatic Segment Space
Management (ASSM) tablespace

• While a useful new option for tables, the
SHRINK SPACE command is only the index
COALESCE command in another form

Richard Foote - Index Internals 162

Shrink Indexes

Richard Foote - Index Internals 163

SQL> CREATE TABLE ziggy (id NUMBER, value VARCHAR2(30));
Table created.

SQL> INSERT INTO ziggy SELECT rownum, 'BOWIE' FROM dual CONNECT BY level <=1000000;
1000000 rows created.

SQL> COMMIT;
Commit complete.

SQL> CREATE INDEX ziggy_id_idx ON ziggy(id) PCTFREE 10;
Index created.

SQL> DELETE ziggy WHERE MOD(id,10) <> 0;
900000 rows deleted.

SQL> COMMIT;
Commit complete.

Using same example as previously ...

Shrink Indexes

Richard Foote - Index Internals 164

SQL> ALTER INDEX ziggy_id_idx SHRINK SPACE COMPACT;

Index altered.

SQL> ANALYZE INDEX ziggy_id_idx VALIDATE STRUCTURE;

Index analyzed.

SQL> SELECT height, lf_blks, br_blks, pct_used FROM index_stats;

HEIGHT LF_BLKS BR_BLKS PCT_USED
---------- ------------ ------------- --------------

3 223 5 88

We get exactly the same results as when we coalesced the index.

Index Rebuild Summary

• The vast majority of indexes do not require rebuilding
• Oracle B-tree indexes can become “unbalanced” and

need to be rebuilt is a myth
• Deleted space in an index is “deadwood” and over time

requires the index to be rebuilt is a myth
• If an index reaches “x” number of levels, it becomes

inefficient and requires the index to be rebuilt is a
myth

• If an index has a poor clustering factor, the index needs
to be rebuilt is a myth

• To improve performance, indexes need to be regularly
rebuilt is a myth

Richard Foote - Index Internals 165

Acknowledgements

• Jonathan Lewis • Tom Kyte

Richard Foote - Index Internals 166

Two experts who have helped advance knowledge of Oracle index
internals immeasurably in the Oracle community

